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Abstract 

Main theoretical results for a transverse feedback system 
with a digital IIR-filter (infinite duration impulse response 
filter) and FIR-filter (finite duration impulse response fil- 
ter) are described. The Z-transform method is used to 
solve the problem of the beam dynamics in the accelera- 
tor with a digital feedback. The analytical solution for the 
damping time and for the eigen frequencies are obtained 
and the system stability analyzed. 

I. INTRODUCTION 

The transverse feedback systems (TFS) are used in syn- 
chrotrons to damp the coherent transverse beam oscilla- 
tions. In these systems the kicker (DK) corrects the beam 
angular according to the beam deviation from the closed 
orbit in the pick-up (PU) 1 ocation at each turn. A classi- 
cal TFS consists of one PU and one DK per plane. These 
systems have been used widely and provide an amplitude 
decrease of 25% per revolution [l]. In order to suppress fast 
resistive wall instability in UNK-1 (Serpukhov, Russia) [2] 
a more effective system is studied and developed [3]. It 
consists of two PU and two DK per plane connected by a 
feedback circuit with a digital filter and delay. The digital 
filters are used in a classical TFS [4] and designed for a 
fast TFS [5] to remove the revolution frequency harmon- 
ics. Feedbacks with digital filters have essential advantages 
for new large accelerators such as UNK, LHC, SSC where 
the revolution period is 70 + 29Op.s and the digital proce- 
dures for signal transformations can be realized with sig- 
nal processors. This article is based on studies of TFS for 
UNK-1 [3, 51 and LHC [6]. 

II. BASIC EQUATIONS 

A feedback system consists of PU and DK connected by 
circuit with a preamplifier, a filter, a power amplifier and a 
delay r (Fig.la). If bunch coupling, which happens due to 
resistive wall instability, is neglected, the matrix method 

Figure 1: Feedback layout (a) and IIR-filter scheme (b). 
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becomes suitable for-the beam motion description. Let 
the column matrix X[n, s] determine the beam state at 
the n-th turn at point s of the circumference Co. The first 
element of this matrix equals the beam deviation z[n, s] 
from the closed orbit and the second one is t’[n, s]. After a 
short DK the 2’ value of the beam is changed by Az’[n, SK] 
while deviation remains the same as before the DK at point 
si. Hence, after DK at point s$, the beam state is 

z[n, sf;] = it?[n, SF] + ?A&, sK], 

where ? is the 2 x 2 matrix in which Tsl = 1 and the other 
elements are zero. The kick is determined with column ma- 
trix Az[n, SK], where the first element equals AZ’[n, SK] 
and t& second one has an arbitrary value. 

If M(sz, ~1) is the transfer matrix from s1 to ~2, then at 
the PUl location at the (n + 1)-th turn the beam state is 

Z[n+ l,spl] = %02[n,spl]+ 

A4 

+~M^(sPI + Co,s~~)~A~[v~i], 

I=1 

(1) 

where ze is the unperturbed revolution matrix from point 
spr of the PUl location and M is a number of kickers. 

Let Az’[n, SKI] be proportional to the output voltage 
Vbut[n, SKI] in the feedback circuit during n-th crossing of 
the I-th kicker. The input voltage I&[n, spl] is assumed 
to be proportional to the beam deviation z[n,spl] in the 
I-th pick-up. The kicker should change the angle of the 
same fraction of the beam that was measured by the PU. 
The delay T = qT0 + Q is adjusted to provide such a syn- 
chronization (q is integer, TO is the revolution period, n is 
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the time of the particle flight between PUI and DKI). If 
the kick at the n-th turn depends on the beam state in the 
previous turns, then for the digital circuit we can write [7]: 

n-q 
Lt[n, SKI] = u[n - q] C h[m]Vi,[n - m - q, 6~4, 

m=O 

where u[n] is the discrete unit step function [7] and the 
h[m] coefficients are determined in accordance with the 
structure scheme of the feedback circuit. If SKI > spy 
and all feedback circuits are identical, then we have 

Aj?[n, SKI] = u[n - q] x 

M(SPI, spl)Z[n - m - q, SPII, (2) 

where ,Bpr and ,BK~ are the transverse betatron amplitude 
functions in the PU and DK locations and ]I(] is the gain 
of the feedback without a filter. 

Eqs.(l,2) fully describe the beam dynamics in the accel- 
erator with the digital feedback system. These equations 
can be solved using Z-transform [7] for sequence X[n, s]: 

co 

ii(z) = c Z[n,sy; (3) 
n=O 

Z[n,s] = n-lctz = c Rez [g(z+;-l] . 

C k 

The motion of the particles will be stable if ]Zk] < 1. The 
damping factor Dk = ]tk] and the number of oscillations 
per turn {ReQk} = arg(%k)/2T are fully determined by the 
singular points zk. using Z-transform for (I,2) we get: 

H(z) = 1-t f: a,,,~-~ 
1 I[ 1- 2 b,r-m 

-1 

. (7) 
m=l m=l I 

The results for the filter of the first order (p = 1) and for 
q = 0 are shown bellow. 

A. Classical Feedback 

For a classical feedback we have M = 1 and 
kcz) = rl^- G-‘(z) det G(z) 

det (tl^- G(Z)) 
&A SPll, (4) 

G(z) = i& + 
M K(z) 

+ &T-mG Mh(SPl + co, SKl)~~(SPl, SPl), 

K(z) = z-q IKW(r), (5) 

where I^ is the unit matrix; X[O, spi] is the initial beam 
state matrix; K(z) is the transfer function for a feedback 
circuit with the delay T and the filter system function H(r) 
depending on h[m]. It is known [7] that in radiotechnical 
sense the circuit is stable if all the singular points of K(t) 
lie inside the circle ]z] < 1. If this condition is fulfilled, the 
singular points Lk in (4) are found from the equation [8]: 

det (zl^- G(Z)) = .z2 - [2 cos(271.Q) + 

SK(Z) 5 sin(2rQ - $ pm)] z + det G(z) = 0, 
I=1 

(6) 

where Q is the number of unperturbed betatron oscillations 
per revolution in transverse plane; $pr~l is the betatron 
phase advance from PU1 to DKI. 
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Figure 2: & for a classical feedback with IIR-filter (left) 
and FIR-filter (right). ReQ = 70.3; ]ImQ] = 0.01. 

When instability occurs, Eq.(6) will have the same form 
but the betatron phase advances must be calculated with 
a complex value of Q(Z) both for coasting [6] and bunched 
PI b earns. 

III. FEEDBACK WITH FILTER 

The digital IIR-filter (Fig.lb) consists of amplifiers a,, 
b, and delays Te; the order of the filter is p. The system 
function for this filter is 

detG(z) = 1 - K(r)sin$p~. 

Taking into account (5,7) we get in (6) a cube equation for 
zk. If ]KI < I, th en in linear approximation we obtain: 

%1,2 = 17 ;\K,,-) efi2%Q _ %$!ilI<lpl,2, 

23 = bl + (al + h)lKlm, (8) 

where pi are defined in [6]. Without a filter (aI = 61 = 0) 
we have two solutions and a damping time 7’ is 

To - = - lnMAX]zk] = i]K] sin(Re+pK) - 2a]ImQ] = 
TD 

=: idm (%) sin(Retiprc) - 2rlImQI. (9) 

This decrement formula is well known [4]. However, for a 
feedback with a filter it is necessary to take into account 
three roots. Fig.2 shows ]zk] dependencies on ]K] when 
the phase advance from PU to DK is adjusted closely to 
an odd number of 7r/2 radians (] sinRe$pK ] = 1). The 
solid curves correspond to the oscillations with the tune 
in neighbourhood of Q. The dotted curve corresponds to 
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Figure 3: Dk and {ReQk} for a fast feedback. 

the third root. This new oscillation mode is conditioned 
with the filter structure, when the kick in DK depends 
on the beam state in the previous two revolutions. To 
provide the independence on ]K] of the feedback action on 
the closed orbit displacement and for a better suppression 
of noise it is necessary to set al = -1 [6]. Optimization 
of b1 value on the maximum damping rate gives bl = 0.66 
for a feedback with the IIR-filter. It is seen from Fig.2 
(left) that for ]I() > 0.65 the damping rate is determined 
by third oscillation mode. For bl = 0 we have a notch 
filter (FIR-filter). The maximum decrement in this case 
(Fig.2, right) corresponds to ]K] = 0.38. It is easy to see 
that a feedback system with a notch filter is slower and its 
stability region is narrower than the feedback system with 
the IIR-filter. 

B. Fast Feedback 

For a fast feedback we have 
Re$KzKi = ~12, then i 

A4 = 2. If Re$p2pr = 

det M^(r) = 1 - 2K(r ) Sin $PK + K2(%). 

After some transformations in (6) we get the equation: 

z - [l 7 iK(z) exp(Ffi+pK)] exp(fi2aQ) = 0. (10) 

Hence, for K(z) in (5) with H(t) from (7) the additional 
solutions .rk and, thus, the new eigen frequencies are ob- 
tained. This leads to modification of stability region, 
]Zk] 5 1, especially when ]K] 2 1. The maximum damping 
rate is achieved by the fast feedback system at optimum 
positions of PU and DK (1 sinRe$pK] = 1) connected via 
feedback without filter [3] and its value is 

MAX(Dk) = ] sinh (2zImQ)/ for ]K] = cash (2rImQ). 

This means that without instability the fast TFS can damp 
the coherent oscillations in one turn. But in the UNK-1 
it is expected that ]ImQ] = 0.1. Hence, the stability re- 
gion is not large. For this reason the PU and DK positions 
were taken as close to their optimum positions as possi- 
ble. In Fig.3 the Dk and {ReQk} dependencies on ]K] are 
shown for the feedback system with the IIR-filter. As it is 
mentioned above there are more than two ordinary eigen 

‘The influence of deviations for phase advances from r/2 radians 
is analyzed in [a]. 

frequencies for the feedback with a filter. In Fig.3 the solid 
curves correspond to the ordinary modes and the dotted 
curves are determined by the filter structure. For the same 
reasons mentioned above for a classical feedback it is nec- 
essary to set ai = -1. The filter parameter b1 = 0.61 
was chosen to provide the best damping conditions. The 
ReQ value for all these curves is 56.7. But with a different 
number of particles the coherent tune shift for ReQ may 
be about 0.09 for the horizontal and 0.41 for vertical beta- 
tron oscillations [2]. It means that Re+pK will differ from 
its optimum value. The particle motion is stable, if [3] 

] sin (Re$pK)] > ) sinh (2zImQ)]. 

Hence, the Re$pK deviation is not more than 0.2~ radians 
in the UNK-1. As soon as this deviation is less than the 
coherent tune shift for vertical oscillations, then the tune 
must be corrected during injection in order to have an 
acceptable phase advance from PU2 to DKl. 

It is necessary to emphasize that the optimum value of 
bl depends on Q. For this reason in the filter design it is 
useful to foresee a possibility to vary the bl. 

IV. CONCLUSION 

The matrix equations for a transverse feedback system 
with a digital filter have been obtained and the Z-trans- 
form method has been effectively used to solve them. The 
analytical solutions for the damping time and for the eigen 
frequencies obtained allow one to design feedback systems 
with digital filters and to optimize the damping rate and 
the amplifier gain in stability region. 
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