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Abstract 

The wall current distribution created by a charged par- 
ticle passing through a beam pipe gives information on 
the beam profile moments 111. A coordinate translation 
has been made to obtain beam centroid moments. The 
beam current, position and profile moments (in terms of 
Ci Py cos n(e - A)) can be obtained by performing a spa- 
tial Fast Fourier Transform on the wall current distribution 
of a cylindrical multistrip monitor [2]. 

Computer simulations of the measurement and their re- 
sults are presented. The accuracy of the measurement is 
predicted to be better than 0.1%. 

I. INTRODUCTION 

Beam profile moments provide beam profile information 
and are very useful for beam emittance [l] and instability 
studies. A multistrip monitor provides a non-intercepting 
tool for that purpose. The derived parameters are mo- 
ments, which not only depend on beam intensity, but also 
on beam shape and size. 

Moment descriptors have various forms. Some exam- 
ples of moments include geometric, complex, radial and 
orthogonal moments. For the particular problem studied 
here, which has rotational symmetries, radial moments are 
adopted in this paper; however, we shall introduce the sub- 
ject with the more familiar geometric moments. 

The definition of the two dimensional geometric (p+q)th 
order moments of a density distribution function p(~, y) in 
plane I, y is defined in terms of Riemann integrals [3] as: 

MP, = JJ zpYqP(z, Y)dX dY 3 p, q = 0, 1,2, . . . (1) 

It is assumed that p(~,y) is a piecewise continuous, 
bounded function, and that it can have non-zero values 
only in a finite part of the x,y plane; then moments of all 
orders exist and the uniqueness theorem can be proved. 

liniqueness Theorem: The double moment sequence Mp4 
is uniquely determined by p(z! y); and conversely, p(z, y) 
is uniquely determined by the set h4,,. 

11. MOMENTMATCHINGAPPROACH 

We could always obtain a continuous function g(s,y), 
whose moments exactly match those of f(~, y) up to a 
given order N,,,, assuming that we have the set of mo- 
ments Mpq [4]. The more higher order moments we have, 
the more accurate and closer to the original function 
f(x, y) the g(z, y) must be. 

g(z,y) = goo+glo~+golY+g20~2+g11~Y+go*Y2 

+ g30z3 + QZ1 ZZY + 9122Y2 + 903Y3 + . . . . (2) 

The coefficients gpq should be determined so that the mo- 
ments of g(z, y) match the moments, MPP, of f(~, y), ac- 
cording to the following expression: 

t1 ti 

JJ xpyqg(z, y)dz dy = M,, . (3) 
-1 -1 

So, if we have the whole set of the second or third de- 
gree moments, we could reconstruct the beam up to the 
accuracy of that order [4]. 

be 
There are some other orthogonal polynomials that can 
used for image reconstruction, which are more conve- 

nient than the moment matching approach [4]. 

III. WALL-CURRENTDISTRIBUTION ANDMOMENTS 

When a charged particle beam passes through a con- 
ducting pipe, an image current will be produced on the 
wall. If the particle is an ultra-relativistic one, or if the 
beam is verv long, then the electrical field will be in a 
plane which-is perpendicular to the direction of motion. 
The wall current distribution in the cross-sectional plane 
is a two-dimensional problem, and cau be described with 
the field produced by a line current. The wall-current dis- 
tribution is not only determined by the beam position, but 
also by the density distribution of the beam and the total 
beam current. 

Fig.1: Wall current due to a line current in a conducting 
cylinder and coordinate translation. 

For a delta function line current pi, at point (yi, 4i), the 
image current density, J, on a conducting cylinder of radius 
R at point (R,8)( see Fig.]) is given by: 

J rmage (r, 4, R, e) = pi 
(R’ - r:) 

2xR (Rz + rf - ZRr, cos(0 - 4,)) (4) 

Expanding in powers of ri/R gives: 

J rmoge(r, 4, R, e) = $ 

The above expansion represents a series of azimuthal com- 
ponents. The waveiength of the dipole component(n= 1) is 
the circumference of the beam pipe 2aR. The induced 
current density at one observed location on the wall will 
be the integral of the above equation over all the beam 
particles: 

~image(r,d,u,B) = & Cp,+2 2% 
L ( n=, 

X 
c p,r: cos nq5, + e$$Cp.r:sinti$~, I : (6) 

I Fl=l I 
The above equation shows that the wall-current density 

created by P beam passing through the pipe is actually 

0-7803-1203-1/93$03.OOW393 
IEEE 2441 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



the sum of moments closely related in form to the radial 
moments with both degree and angular dependence of n. 
The FFT components of each order give the moments of 
that order in the forms of xi py cos nq4; and ci p: sin n4i. 

But the moments we obtained here are the moments 
around the center of the beam pipe(p,,,,). Only the mo- 
ments around the beam centroid have the property of in- 
variance, and can be used to describe the beam. 

IV. CENTROID MOMENTS 

A coordinate translation has to be done to obtain the 
centroid moments,Fig.l. Let us use the complex form to 
express the moments. From the FFT, the moments we 
obtained are: Pc = xi pi 

P,, = x pir: cos nqi, + i EPirY sin n& = C P*Z: (7) 
I , I 

where Z; = zi + iyi is the distance from the particle to the 
center of the pipe. Zc = 10 + iyc is the distance from the 
centroid to the center of the pipe. So, the distance from 
the particle to the centroid is: Zi - ZO. 

The centroid moments M,,, are: 

M,, = PO = CP’ (8) 
t 

C. Position 

The first order 
cos(0-&), which 

component of the FFT is &r Cipiri 
gives the first degree moment around the 

center of the pipe as Re( Ml1 ) = Ei piri COS Qi ,Im( Mr 1) = 
CiWisin4i. 4 r re P resents the phase angle in the FFT 
data, which is the total effect of the position shift of all 
the particles. 

Therefore the position of the centroid in a polar co- 
ordinate is r = (fiRe(Mrr)2 + Im(M11)*))/Mo, and 
41 = tan-l(lm(M1l)/Re(M1l)), or in the xy plane, 
x = r ~0~41, y = r sinf$r. 

D. Quadrupole, seztupole and higher order moments 

The second order component from FFT provides infor- 
mation about the best-fit ellipse. The third order compo- 
nent gives the sextupole moment; the fourth order gives 
the octupole moment. The number of moments that can 
be obtained depends on how many strips the monitor has 
The moments are all in the form of: 

Re(M,,) = Cp.r: cos n& Zm(M,,) = Cp,r: sin nd, (9) 
t 

The coefficients of the second order component from the 
FFT give the second degree moments, i.e. quadrupole mo- 
ments and phase. It also can be written as: 

M nn = "(" - 'O)" = Cp' 22 ;!,j,~;rlz,*z,"-k &T(M~~) = 
I , kc0 

= (-l)“z,“pO + nc ;,i---;-; z,“-k& + p,,, . 
k=O ’ 

V. THE BASIC BEAM INFORMATION FROM A 
CYLINDRICAL MULTISTRlP MONITOR 

The wal-current distribution on a cylindrical multistrip 
monitor immediately yields basic beam parameters such 
as current, position, orientation and information related 
to size. 

A. Phase angle of each higher order moment 

The FFT of the wall current distribution only gives 
the value of Re(M,,), Zm(M,,,) and 4, directly. Here, 
Re(M,,) represents the real part of the second order mo- 
ment, and Im(M,,,) represents the imaginary part. 

Although the azimuthal moments are the sum of the den- 
sity value at each point multiplied by its distance ry and 
cosn& or sinn&, where 4i is the phase angle of the parti- 
cle at that place, the collective effect of the sum is that the 
moment has a phase angle 4,, which represents the orien- 
tation of the ima e component of that order. For example, 
for the quadrupo e moment, 42 represents the orientation 7 
of the best-fit beam ellipse, and for the sextupole, 43 repre- 
sents the orientation of the triangle, etc. So, from the FFT, 
nq$, can be determined by tan-l(Im(Mn,)/Rm(Mn,)), 
and 4, as well. In the following, we use 4, to represent 
the phase angle in each FFT component of the correspond- 
ing order and use M,,,, to represent the centroid moments. 

B. DC component 

The first component, i.e. zero order of the FFT, is a 
constant value, which represents the dc current of the beam 
with a factor of TR. The dc current is also called the zero 
degree moment. 

i 

Im(M22) = 
1 

2 x Pizt YS 42 = itan 
-l Zm(M22) 

RetM22) (10) 

I 

For a uniformly distributed elliptical beam whose principal 
axes are the same as x and y, the following formulae are 
valid: 

JJ pz’dz dy = tnpab’ 
JJ 

py’dz dy = +pa’b (11) 

where 2a and 2b are the long and short axes of the ellipse 
respectively, and J J pxydz dy = 0. So, 

4422 
-= 

MO 
;(a’ -b2) f$= i(a2+b2) (12) 

where MXI is the second degree moment with 0 angular 
dependence, i.e. zi pip?. TIhe half-axis a and b can be 
determined therefore. 

I Fig.2: Best-fit ellipse 

E. Width signal 

Although we have obtained M22 and the phase of the 
beam, MZO, which contains a2 + b2, is missing from our 
FFT data. A Monte Carlo computer simulation has been 
done with elliptical beams of uniform distribution. All had 
the same a2 - b2 = 0.75, but a/b varied from 1.5 to 2, 3 
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and 4. The wall-current distribution has been calculated 
for both centered and off center beams. As long as the 
positions and phases of the beams are the same, the differ- 
ence between the corresponding wall-current distributions 
is of order 10e4, which is at the level of statistical fluctu- 
ation of the Monte Carlo calculation. Therefore, Mzo or 
a/b has to be measured with another method. 

If the beam aspect ratio is known from the beam optics 
or some other measurement, then the best fit ellipse can 
be determined. With Teague’s moment matching formulae 
or other orthogonal polynomials, one could reconstruct a 
beam shape to the accuracy of that order. For a thin beam, 
say, b is 1 
so the wi 1 

3 or even l/4 of a, a2 - b2 is approximately a2, 
th signal u can be obtained immediately. 

A round beam does not have high order moments, so 
the cylinder multistrip monitor will indicate this. When a 
round beam is in the center of the pipe, the distribution 
on the wall is uniform. 

VI. COMPUTER SIMULATION 

A Monte Carlo calculation has generated an elliptical 
beam, which is 0.25 cm vertically off the center of the beam 
pipe with a size of 2 cm x 1 cm and 42 = n/2. Since the 
moments of each order can be calculated, the accuracy of 
the method can be determined. The comparison shows the 
accuracy can be better than 0.1%. Fig.3 is the reconstruc- 
tion of the generated beam up to second degree moment. 

1 

0.5 

0 

-0.5 

-1 
-1-0.5 0 0.5 1 

Fig.3: Reconstruction of computer generated beam. 

The result of the computer simulation is listed in the fol- 
lowing table for the first 6 orders: 

Table: Monte Carlo Simulation Results 

n FFT Amp1 phase ctr. moments dir. talc. 
1 0.2502696 1.570795 -7.96E-09 0. 
2 0.2500159 3.12109 -0.18738 -0.1875 
3 0.1564581 4.712302 -1.104%04 0. 
4 0.1446773 6.282875 0.070239432 0.0702232 
5 0.1183089 1.570440 1.4728506E-05 0. 
6 0.1101785 3.142132 -0.032884017 -0.0328926 

VII. SENSITIVITY 

The wall-current distribution formula [6] gives the am- 
plitude of the second order component of the FFT as 
& ci pi r: cos 2( f?- 4i). The sensitivity to measuring this 
component is: 

2 

[ 

1 C, p,rf COS2(8 - di) 1 1 (a’ - b’) 

RZ Ci PI =2 (13) 

Assume a voltage across the resistor of the monitor is 
induced by a sizeless beam with same intensity, position, 
phase and time structure. If the aspect ratio of the mea- 
sured beam is 2 and the short half axis b is l/10 of the 
pipe radius, then the signal we could pick up is 0.015 of 

this voltage value, which not only depends on beam struc- 
ture but also on the frequency response of the monitor. 
The signal amplitude also depends on the sensed current, 
which is determined by the width of the strip used. 

If the wall-current monitor has the frequency response 
needed, and assuming that the peak current is 10 mA, 
with 10 ohm resistors, 16 strips, we will have about 6.25 
mV across each resistor. With a 40 dB amplifier, the signal 
will be 625 mV. With an aspect ratio of 2, b/R = 10, we 
will have a signal changing from -9mV to +9 mV around 
625 mV. 

An advantage of the method is that because the varia- 
tion in the amplitude of the signals depends on moments, 
we can get a measurable signal for a beam that is small in 
size but high in intensity. 

VIII. ERROR DUE TO NOISE 
In the pipe, there may be other sources of electrical 

charges, such as residual gas etc., which cause errors in 
the signal. Considered as white noise, their effect will be 
uniformly distributed in the area of the whole pipe. In the 
round pipe, this will give an extra uniform distribution 
to the wall-current, which only changes the zero degree 
moment, not the others. When we use the zero degree 
moments as a dc level for normalization to get beam size 
information, there will be an error. 

There may be some other noise sources due to grounding 
or RF etc, and one should try to eliminate them before 
doing the FFT. 

IX. SOME SUGGESTIONS ’ 

The FFT analysis of the wall-current distribution has a 
unique advantage; it can distinguish the moments of each 
order very clearly. A concern with some present BPM 
systems is correction for non-linearities. But if the beam 
pipe is round, using the FFT, it is very easy to obtain the 
position of the beam centroid without any non-linearities. 
Also, the zero order coefficient of the FFT gives the dc 
component right away. One does not need to do BPM 
mapping anymore, just place a round pipe antenna in the 
center of the pipe to calibrate the correction coefficients 
for all the pick-up strips. This will save a lot of work. 

To avoid noise problems, some filtering, which usual elec- 
tronics have already used, may be needed before doing the 
FFT. 
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