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Abstract 

In the SLC many feedback systems keep the beam under 
control. Here we concentrate on feedback systems which 
operate at 120Hz or lower frequencies, so software can be 
used to make some decisions. The linac steering feedback 
uses beam position monitor data and corrects magnet set- 
tings to keep the beam orbit to the desired values (mostly 
flat). Looking at the Fast Fourier Transformation (FFT) 
of the data, a reduction in the zero and very low frequency 
component is observed, while on the other hand noise at 
higher frequencies is amplified. To improve this situation, 
the FFT can be used to alter the feedback so a flat spec- 
trum can be achieved, indicating the lowest white noise 
level. If there is a spike at e.g. 2 or 7Hz or another feed- 
back is oscillating, this feedback would adjust itself till 
this spike is reduced to the white noise level (not beyond). 
Different simulation results for the frequency response are 
presented. 

1 Introduction 

At the Stanford Linear Collider (SLC) the beam position 
and angle is control by feedbacks at many different loca- 
tions. A step function in the position of the injected beam 
into the linac would cause an over-correction if all the feed- 
back would start to correct the situation in a simple way. 
One way is to link the feedback together and share the 
information in a cascaded way [l]. Here we will describe 
another approach. The history of the beam itself carries a 
lot of information, which can be used to predict the posi- 
tion (and angle) of the next pulse. Even if some upstream 
feedback is oscillating or there is a m time slot” separation 
(60 Hz oscillation), the fast Fourier transformation (FFT) 
shows which component is the highest and should be sup- 
pressed. The main idea is that the feedback should not 
have a fixed frequency response but vary its response due 
to the measured FFT spectrum. So instead of trying to 
reduce some zerefrequency component, which might not 
be there at the time, and amplifying e.g. some 2Hz noise, 
the new FFT-oriented feedback would recognize the situa- 
tion and would only reduce the highest peaks in the FFT 
spectrum. 

Different insights of averaged response curves and their 
time behavior might be even interesting for the current 
cascaded feedback. 

*Work supported by the Department of Energy contract DE 
AC03-76SFOO515. 

2 General Feedback Issues 

A feedback should keep a status, say the position of a 
beam, in a fixed state. Any deviations should be brought 
back as soon as possible, so the rms around this state is 
minimized. White noise cannot be reduced with a feed- 
back, but any deviation like more low-frequency compo- 
nents can be suppressed. How a feedback works in general 
can be understood by looking at its frequency response. 

2.1 Frequency Response 

Let’s take the position of beam pulses as an example. 
Many pulses jitter around zero or slowly drift away. The 
feedback tries to predict the position of the following pulse 
by using one or many pulse positions of the past. Applying 
the prediction might cause a reduction or amplification of 
the next position amplitude. This depends on the response 
type of the feedback and on the frequency. Fig. 1 shows a 
typical behavior of some simple feedbacks for mainly low 
frequency noise. Looking only at the last point, ~1 dot- 
ted, the feedback will reduce it to zero at low frequency, 
at l/6 * 120 Hz = 20 Hz is the cross-over and the resulting 
amplitude will be twice as much at 60Hz. For an average 
of the last two points, (zr + t2)/2 dashed, the response 
doesn’t overshoot that much, and so on till an average of 
the last six points, (XI+ 1~2 + . . . + te)/6 dashed again, has 
three oscillations. 
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Figure 1: Feedback Response Function. 

At 120 Hz all frequencies between 0 and 60 Hz can be rec- 
ognized. Besides the wanted reduction at low frequency, a 
simple feedback looking at the last, or the last two, .._ or the 
last six pulses gives always some oscillations. The average 
of these siz possibilities (solid) shows a fiat amplification. 
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An interesting behavior is an average of all these aver- 
ages (solid), which is pretty flat for higher frequencies and 
doesn’t show the overshoot directly after the first cross- 
over. This average gives additionally a time structure, 
later points are weighted stronger and earlier points are 
damped in such a natural way that the “necessary” over- 
shoot is flat. This feedback would reduce any drifts up to 
about 10Hz and amplify white noise above that by about 
a factor of 1.25; (60 pulses yield a reduction up to 3 Hz and 
an amplification of less than 4 %). 

2.2 Higher Frequencies 

These feedbacks can be also used to reduce high frequency 
noise by changing the response function. Instead of pre- 
dieting the last (xl), the second last (xz), . . . or (x4) top 
in Fig. 2, the feedback can guess minus the last, minus the 
second last, . . . pulse (middle). By determining the fre- 
quency of the oscillation it would be possible to reduce any 
oscillation by just reacting on the last two points: For low 
frequencies up to 20 Hz x1 is right, between 20 and 40 Hz x2 
(dashed middle) and between 40 to 60Hz -xl will reduce 
all below the unit amplitude. By knowing the frequency f 
and taking xi cos4 - xzsin4 with 4 = 2*rr*f/l2OHz a 
reduction down to 0.55 or lower is achieved. 

The goal is to obtain the frequency amounts by making 
an FFT or by other techniques and use the achieved in- 
formation to adjust the response of a feedback that it can 
reduce all pulse to pulse variations to a flat white noise 
level (lowest possible amount). 
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Figure 2: Other Response Functions. 

Reacting on the last (xl), second last (x2), . . . (top), or on 
minus the last, minus the second last, . . . pulse (bottom) 
has diflerent response functions. 

3 Noise and Oscillations 

The random white jitter noise of a beam position is difficult 
to improve, but any frequency component which sticks out 
in the Fourier transformation and is quite stable indicates 
some oscillation (or offset, drift for f M 0 Hz). Fig. 3 show 
a measurement of the beam angle at a linac feedback in 
the SLC. 
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Figure 3: Oscillating Beam Angle. 

Besides the noise jitter, the angle of the beam is oscillating 
with an amplitude of about one sigma of the noise increas- 
ing the rms. The sources are mainly feedbacks having too 
much amplification at these frequency. 

~~~~ ?IiC] 

0 100 0 20 40 ‘0 
Pulse x Frequency [Hz] 

Figure 4: Simulation of Noise plus 1 Hz Oscillation. 

The jitter noise and oscillation in the time frame (left) and 
its frequency amplitudes (right). 

A simulation with a white noise jitter (Gaussian sigma = 
1) and a 1 Hz oscillation (amplitude = 1) is shown in Fig. 4. 
The left shows the noisy oscillation for 500 pulses. The 
square-root of the FFT (not the power spectrum) is shown 
on the right and gives the amplitude of each of the 256 
frequency bins. The 256 noise bins at about Af = 0.0625 
give an rms-amplitude 

0) 

of one. The oscillation would add about l/2 “rms” in 
quadrature. But since the distribution of a sin is not Gaus- 
sian at all, but more like double horned corresponding to 
the two crests of the sin curve, the gaussian fit to the pro- 
jection is about 30% bigger, indicating that the single OB 
cillation had about an 0.8 amplitude effect. 
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4 FFT- Orient at ion 

The so far mentioned examples give some ideas how to im- 
plement the information of an FFT. Here some techniques 
and the comparison with Notch filters are given. 

4.1 Simple Approach 
Following the example with the last two pulses, here is 
a way to determine the weights of the desired correction. 
The last pulses 21, 22 . . . 2, are multiplied by an (n + 
1) *n matrix M, which contains the information about the 
oscillation frequency 

Mmk = cos(*/n * (m - 1) * k) *2/n, 

withM=M/2ifm=lorm=n+l. 

(2) 

For m = 0 it is just an averaging over the last n pulses 
(no averages over different n to keep it simple); for m = n 
it is -xl, +x2, -, + . . . . which would be a high number 
if there is a big time slot separation (60Hz oscillation). 
The square of these numbers and a sin term are used as 
weights for the different predictions. This method can be 
compared with Notch-filters at zero, f/2n, f/n, . . . f/2 
and a weight for each filter. An averaging like in Fig. 1 is 
also possible for a Notch filter. 

4.2 FFT Weights 
An FFT of the last n pulses results in also n numbers, 
which are the amplitudes and the phases at the corre- 
sponding n/2(+1) f re q uencies. For instance, 6 pulses have 
an amplitude and phase value for 10,20, 30,40,50 Hz and 
only an amplitude value for 0 and 60Hz, since zero and 
Nyquist (60 Hz) frequency don’t have a phase information. 
The amplitudes can directly be used as weights. Fig. 5 
shows an example where eight+1 frequencies are totally 
suppressed. 

The overshoot at low and high frequency needs more in- 
vestigation, the rest is at least less than 55 % of the original 
amplitude. Going with this scheme to more pulses doesn’t 
reduce these peaks dramatically but adds new points with 
total suppression. A time dependent averaging might re- 
duce more the peaks, since the slope near the suppressed 
frequency is not as steep. 

The interesting feature of this feedback is that it can 
suppress oscillations of any frequency below their initial 
amplitude. This means that the response of the feedback 
has no parts with amplification. 

4.3 Future Work 

The FFT-oriented feedback which adjusts the feedback 
response to the amounts in the FFT has a high goal to 
achieve. It should get the maximum out of the past pulses 
to achieve the lowest spread around the desired value. 

The time dependent averaging should get the right 
damping. Also the behavior of higher order correction [2] 
may be considered. They achieve a flat curve at the sup- 
pressed frequency on the expense of a much worse ampli- 
fication beyond the crossover point. 
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Figure 5: FFT-Oriented Feedback Response. 

The lower solid curve shows the response by using the FFT 
information of oscillations with an amplitude of 9. The 
other curves are Notch filter type responses for eight pulses. 

The response to steps or varying frequencies has to be 
checked. The many frequency components during a step 
may be ideally handled by an FFT-oriented feedback. But 
even whether it is good for frequent changes or better for 
stable oscillations can be adaptive: Taking many pulses 
into account slows down the response to fast changes, 
but these changes would tell the feedback to consider less 
pulses. 

5 Conclusion 
The study of a feedback which response is adjusted by the 
amount of the FFT of the last pulses has shown to reduce 
every single frequency component. Additionally averaging 
schemes were found which don’t show oscillations in the 
amplification regime which should be more stable than the 
currently used response. 
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