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Abstract 
This paper discuss the high speed method of the orbit 

correction. The speed is affected by many time-constants such 
as vacuum chamber, magnet, position sensor, power supply, 
controller, and beam itself. The beam effect is the major 
concern of this paper. The damping effect implies that the 
transfer function of the orbit correction contains at least a 
pole. In the DC case, the transfer function becomes the 
response matrix of the closed orbit. In the fast feedback 
application, this pole has to be taken into account to avoid 
instability. If the zero-pole compensation is possible, the 
correction speed can be increased. On the other hand, the 
local bump method doesn’t change the periodic boundary 
cpndition of the orbit. Therefore, the local bump responds 
immediately without damping transient. The linear 
combination of the local bump is fast, but less degree of 
freedom. The general method to increase the correction speed 
and the eddy current induced sextupole component are 
discussed. 

I. Introduction 

In the control system, the frequency response of each 
subsystem should be identified. The controller is then 
designed with proper gain and phase compensation to have a 
satisfactory dynamic response and accuracy. The modeling of 
the subsystem plays an important role in the design phase. In 
this paper, The model of the accelerator from the control 
point of view is discussed and treated with the beam position 
monitor (BPM) together. The transfer function between the 
input steering field and outpclt reading of the beam position 
contains several time-constants, such as damping time and 
betatron frequency which are known by every accelerator 
physicists. Here, all of these physical nature is organized into 
a engineering presentation. 

There are many methods to correct the beam position. 
The major concern is the frequency response of these 
methods. The speed means the fast setting and the high 
feedback gain. Both characters are wanted for the good 
dynamic response in a feedback control system. Two 
methods, bump and response matrix, are selected. The bump 
is fast in sense of accelerator response. Therefore, the 
controller increase the gain at high frequency region. The 
response matrix is accurate and suitable for the slow 
operation. The combined method joins the advantages and 
provides the fast and accurate feedback. 

II. Kick Response 

The betatron oscillation induced by a kick pulse is 

x,, = &iZCsin(d, - b,).e . . ...(l) 
where m,n are the location indices for the beta function and 
the phase in respect to the observation as well as the kick. 8 is 
the strength of the kick. If we take the damping effect into 
account[l], the particle oscillation amplitude of the kth turn 
of a circular accelerator is written bq 

x,(k) = e-M0’r .,/a.8 .sin(2nvk++,) . . ...(2) 

The damping factor e-lrrO!’ express the time relationship 
between the revolution time T,, and the damping time z in 
average. v is the characteristic tune of the accelerator, and 
4, = 6, - $,, The observation, turns by turns, is actually a 
discrete form. We can find the z transform 

X,,(z) = ?x(k).z-” 
k=-cc 

. . ...(3) 

in a standard text book 121. with a general expression 

H,,(c)=~=&&I{ ,,j:- 
Z Z-e-T~/~ .e~2nv ] 

121 > e-Toir . . . ...(4) 

This transfer function is used to measure the bctatron tune 
with the knock-out method. The betatron oscillation has a 
resonant amplitude when the excitation frequency approaches 
the betatron frequency. The name “knock-out” is no longer 
true for an electron machine with damping. 

If the concerned frequency is much less than the 
revolution frequency, we take the short revolution lime limit 
T, -+ 0. The observation is treated as a continuous signal, 
whose corresponding Laplace transform is[2] 

H,,(s) = ,hk.I Jn*- 1 ..I . ..(5) 

1 
s+'- jcot 

z 1 

where o t = 2nv/T, is the angular velocity of the betatron 
oscillation. In this continuous-signal approach, the kick 
pulse is becoming a &function 86(t -to). The transfer 
function of the impulse response of the accelerator is just like 
a damped second order low-pass filter with a pair conjugate 

0-7803-1203-1/93$03.0~001993 
IEEE 

2269 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



The betatron frequency o t is the upper 

limitation of the feedback frequency, since the phase changes 
very fast when the excitation frequency approaches w , 

III. Response Matrix 

We define the discrete unit step kick of the kth turn 

k<O 
k>O 

The Z transform of this function is 

. . ...(6) 

u(z)=& (I4 ’ 0 . . . .X7) 

The final state of the unit step response is obtained by using 
the final value theorem. 

;+Ex,,,,,(k) = $z-l).H,(z)u(z)4 

= \Ip,B.*o-Tm(l-e$~.ej~~~) . . . ..(‘I 

Wiedemann has exact the same expression in the Chapter 7 
of his book [l]. He took the short revolution time limit 
T, + 0 to get the well known formulation of the response 
matrix. 

&A 
A, = 2sin(nv) 

cos(7w+&J .., . ..(9) 

In many standard textbook, this formula is solved by the 
periodic boundary condition without damping effect[3]. It 
holds true as long asT,, << z. In case of T, - z , the equation 
8 has to be applied. For a super big synchrotron light source 
with many insertion devices, this condition may occur. With 
some rearrangement, we can prove that the denominator is 
always greater then zero. 

= 2eeTo” (cosh( $]- cos(2nv)) > 0 ““‘(I”) 

It implies that the resonant line disappear. The damping 
effect has a positive contribution to avoid resonant. 

IV. Local Bump 

A local bump doesn’t change the closed boundary 
condition[3]. Only the orbit inside the bump is changed. 
There is no betatron oscillation propagate to the next turn. 
Hence, the response of the step local bump is immediate 

without oscillation and damping. The transfer function of the 
local bump is merely a matrix without poles and zeros. 

H, = rosin.% . . ...(n) 

Where a, describes the tri-diagonal bump matrix 

a, = 6n&1 
sin(+i,l+l) sin(+*+l,i-l) +6 , Sin(Oi-l,,) ,,,. (12) 

Jc +6n.t JiF “‘I+ J&z 
Since the bump is created by three kicks, the column number 
is less than row number by 2. This also means that the degree 
of freedom for bump correction is less than for matrix. 

V. BPM 

The beam position monitor functions like a radio 
receiver. The signal coming from the buttons is mixed with 
local oscillation and filtered to low frequency. Then, we have 
the observation 

o,(t)=‘~~fb(t-kTo)x,(k) . . . ..(13) 

where f, (t - kt,) is the impulse response of the BPM. This 
formula is rather difficult to evaluate. We try a first order low 
pass filter to make this calculation clearly. Assume that the 
low pass filter has the same time constant as the damping 
time constant of the accelerator. The observation of the 
equation 2 becomes 

t>kT, 
o,(t) = C e-(f-KTo)l’ .x,(k) 

k=O 
. . 

For the low frequency application, we approximate again 
with the same limit To -+ 0. 

limo,,(t) = emti’ A,,,,, 
To’0 

. . . ..(15) 

The transfer function of the observation turns out to be 

Hh= 
A mn 

s+ lT / 
. . . ..(16) 

the response matrix with a first order low pass filter. 

VI. Fast Feedback 

A combined correction method of bump and response 
matrix is considered here to apply on the global feedback 
system. The fundamental idea is to use bump method at high 
speed and response matrix at low speed. The response matrix 
has more degrees of freedom, which allows a better correction 
of the closed orbit distortion. The local bump is usually 
applied at the local correction of the photon port with a high 
setting rate. We want to merge the bump method into global 
feedback system. From the analysis of last section, the 
betatron oscillation raised by corrector setting will not affect 
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the observation, if we use BPM filter to smoothing reading. 
However, the betatron is damped with the speed of the 
damping time constant which is independent of the 
smoothing time constant. 

The concern is slow damping time, which is in the range 
of a couple of millisecond. The fast setting from the response 
matrix will activate the betatron oscillation. The photon beam 
position detectors will pick up the betatron oscillation and 
force the local bump at photon port to correct it. From this 
point of view, we have to reduce the correction gain at high 
frequency region (> 100 Hz), if the response matrix is 
applied. In the SRRC case, this attenuation will be 
contributed from the vacuum chamber. 

Figure 1. System Block Diagram 

Figure 1. is the block diagram of this combined 
correction method. The BPM readings pass through the 
smoothing filter and are distributed to each correction 
algorithm. After the calculation, the setting values are 
compensated in the high frequency region for the bump 
method, and in the low frequency region for the response 
matrix. The sum of two setting values is send to the 
correction magnet. We compare the sum setting and the BPM 
reading to estimate the parameter changes. The new 
parameter values modify both algorithms with the adaptive 
method[4]. 

The compensation of the bump method starts with a high 
pass edge, since the DC accuracy of bump is worse than that 
of the response matrix. The gain at higher frequency region 
is enhanced by another rising edge, which attempt to 
compensate the attenuation from the vacuum chamber. This 
enhancement should be carefully adjusted in respect to he 
speed of the correction power supply. On the contrary, the 
setting from the response matrix is enhanced below the cut- 
off frequency raised from the vacuum chamber response. 

The correction mechanism transfer the setting current of 
magnet to steering angle. The response contains two poles. 
One of them is coming from the vacuum chamber; the other 
depends on the character of the power supply to drive the 
inductive load. The modem MOS technology provides the 
high speed capability to rUil1 this requirement. 

VII. Vacuum Chamber 

The eddy current is the energy dissipated part of the field 
equation when the alternative field penetrates a metallic 
chamber. The transfer function is more or less like a low pass 
filter of the first order. The time constant is proportional to 
the product A-0-a of the thickness A, the conductivity o and 
the perpendicular dimension “a” of the chamber in respect to 
the field[5]. This time constant is not the limitation of the 
feedback speed indeed, since the phase lag is stable and less 
than 90 degree. Driving over this cut-off frequency requires 
more power to keep the same field. However, the high 
frequency component of the feedback signal exists rarely 
because of the shield effect. The power consumption is small 
as long as the signal is small. The speed is acutely limited by 
the second pole of the correction power supply and the time 
delay of the controller. 

The other concern is the sextupole component. We take a 
low order approximation of the lost field[6] 

AB(x) = AB(0).( l-xxz). . . . ..(17) 

The jitters of the beam is in the range of hundred urn. Its 
spectrum concentrates most in the region lower than the 
chamber cut-off frequency. Since the lost field is proportional 
to the jitters and its frequency, the contribution of the 
sextupole can be estimated by equation 17. 
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