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Abstract 

A theory of global orbit correction using the technique of 
singular value decomposition (SVD) of the response matrix 
and simulation of its application to the Advanced Photon 
Source (APS) storage ring are presented. The response matrix 
relates beam motion at the beam position monitor (BPM) 
locations to changes in corrector magnet strengths. SVD 
reconfigures the BPMs and correctors into the same number of 
“transformed” BPMs (t-BPMs) and “transformed” correctors 
(t-correctors), each t-BPM being coupled to at most one t- 
corrector and vice versa with associated coupling strength 
which determines the efficiency of orbit correction. The 
coefficients of these linear transformations can be used to 
determine which BPMs and correctors are the most effective. 
Decoupling the weakly coupled pairs will enhance the overall 
correction efficiency at the expense of accuracy. The orbit 
errors at decoupled t-BPMs are conserved and the strengths of 
decoupled t-correctors can be adjusted appropriately to 
optimize the actual corrector strengths. This method allows 
for estimating the limitation on orbit correction with given sets 
of BPMs and correctors, as well as optimizing the corrector 
strengths without overloading the corrector magnet power 
supplies. 

I. INTRODUCTION 

The third generation synchrotron light sources, of which 
the Advanced Photon Source (APS) is one, are characterized 
by low emittance of the charged particle beams and high 
brightness of the photon beams radiated from insertion 
devices. Transverse stability of the particle beams is a crucial 
element in achieving these goals and the APS will implement 
extensive beam position feedback systems, which include 320 
corrector magnets, 360 positron beam position monitors 
(BPMs) distributed around the storage ring, miniature BPMs 
for insertion device beamlines, and photon beam position 
monitors in the front end of X-ray beamlines. 

The beam position feedback systems can largely be divided 
into the global and local feedback systems according to the 
extent of correction, and the DC and AC feedback systems 
according to the bandwidth of correction. 

In this work, we will concentrate on the theory of DC 
global orbit correction and its application to the APS storage 
ring. We will show that the global response matrix relating 
the beam motion at selected BPMs and changes in steering 

corrector strengths can be transformed into a diagonal matrix. 
The mechanism of this transformation is provided by the 
technique of singular value decomposition (SVD)[l-31 of 
matrices. Each diagonal element represents the correction 
efficiency of an orbit correction channel and the channels are 
independent of one another. The AC global orbit correction is 
then equivalent to a combination of the DC global correction 
algorithm and multiple non-interacting feedback systems. The 
analysis of a single-channel feedback system in frequency and 
time domains is treated in Ref. [4]. 

II. THEORY 

Let us consider M BPMs and N correctors used for closed 
orbit correction in the storage ring. The i-th BPM has beta 
and phase functions (pi. vi), and similarly, the j-th corrector 
has (P.-j, vcj). The response matrix Rij corresponding to the 
beam motion at the i-th BPM per unit angle of kick by the j-th 
corrector is then given by [5] 

Rij = $& COS (IWi - WcjI - XV). 

v is the betatron tune of the machine. The response matrix Ri, 
can be obtained from measurements by reading beam position 
changes while varying the corrector strengths one by one. 

A, ND Formalism 

With the response matrix R thus obtained, we write R as a 
product of three matrices U, W, and V as [l] 

R = UW.VT, (2) 

where U is an M x M unitary matrix (UTU = U.Ur = l), W is 
an M x N diagonal matrix with positive or zero elements, and 
V is an N x N unitary matrix (VT.V = V.VT = 1). M is the 
number of BPMs and N is the number of correctors. This 
decomposition is unique only to a certain extent, and there are 
other ways of decomposing the matrix R. [2, 31 

Let us denote by Ax the global orbit change due to the 
corrector strength change A\8 and define 

Ax’ = UT-Ax and A8’ = VT.AO. 

Then, from Eqs. (2) and (3) we have 

Ax’ = W-A@, 

(3) 

(4) 
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Equation (3) is the rule of transformation for the BPMs and 
correctors. Ax’ and A@ are the vectors in the transformed 
BPM (t-BPM) space and transformed corrector (t-corrector) 
space, respectively. The columns of the matrices U and V are 
the orthogonal basis vectors ( ui) and (VI}. The elements of 
the matrix W is given by 

Wij = W,in(ij) 6, 3 (5) 

We call these diagonal elements w, (2 0, 1 I n < min(M, N)) 
eigenvalues, which represent the coupling efficiency between 
the t-BPMs and t-correctors. The matrix R is singular if any 
of the eigenvalues are equal to zero. The basis vectors are 
related through the relation 

Rev, = w, u, . 1 lnlmin (M,N) (6) 

B. Matrix Inversion and Orbit Correction 

Let Ax be the orbit error given by the difference between 
the reference orbit x, and the current orbit x,. That is, 

Ax=x,-x,. (7) 

In order to bring the orbit to the reference orbit, we need to 
calculate A0 such that 

R.A0 = Ax. (8) 

In case such solutions do not exist, we want the solution that 
minimizes the difference IReA - Axl. SVD provides this 
solution as 

A0 = Riny.AX, (91 

where 

Rio” = V*WinV.UT. (10) 

Win” is a diagonal matrix of dimension N x M and the 
elements are given by 

Winv.ij = %nin(ij) bj 9 (11) 

where 

W” I&W,, 

otherwise. (12 n 5 min (M, N)) (12) 

E is the singularity rejection parameter in the range [O,l]. This 
parameter is determined primarily by the orbit correction 
needs and the corrector strength limits. Zero qn’s correspond 
to decoupled channels which do not contribute to orbit 
correction. 

When E = 0, all the non-zero eigenvalues are retained and 
the most accurate correction will result. However, this will 
require very robust power supplies for the correctors. On the 
other hand, if E = 1, Rinv is a null matrix and there will be no 

orbit correction. Usually, E is set to the smallest value such 
that none of the power supplies saturates. 

For a given matrix R, we define E,(R) as 

E,(R) = max (E I w, > E w,, for all w, # 0). (13) 

That is, E, is the largest possible value for E in order to retain 
all non-zero eigenvalues. The inverse matrix Rinv satisfies 

R*Rinv.R = R (E I E,) and Rinv*R*Riny = Rinv (for all E). (14) 

C. Minimization of Orbit Error 

Orbit correction when the number of BPMs M is not larger 
than the number of coupled channels C (I min(M, N)) is 
trivial since the solution that satisfies Eq. (8) always exists. 
Let us now consider the case when M is larger than C, the 
maximum number that does not saturate the corrector 
strengths, and let Ax be the initial orbit error. Then the new 
difference orbit Ax’ after applying the correction A0 given by 
Eq. (9) using Eqs. (2) and (3). is 

AX’ = (1 - R.Ri,,)*AX = U.(l - W’W~“~).UT.AX, (15) 

or, in the t-BPM space, 

AX” =UT.Ax’ = (1 - W.Wi”,)‘~‘. (16) 

Since the transformation conserves vector norm, Eq. (16) 
gives 

(17) 

In Eq. (17) the position error AX’i is reduced to zero for 
the coupled t-BPMs (1 I i I C) after correction, while it is 
conserved for the decoupled t-BPMs (C + 1 5 i I M). 
Therefore, the orbit error cannot be reduced further than given 
by Eq. (17) unless C is increased by, e.g., optimizing the 
corrector strengths. This is also proven by showing that the 
corrector strengths are not changed any more. From Eq. (14) 

A8’ = Rinv*Ax’ = (Rinv - Ri,,*R.Ri,v)*AX = 0. (18) 

Particularly, with C equal to N, Eq. (17) is the absolute 
minimum beyond which no further orbit correction is possible 
by any method. However, in reality, error in the measurement 
of the response matrix R, changes in the machine condition, 
and external perturbations cause residue in the closed orbit 
error. Correction of this error is done by AC orbit correction 
with appropriate bandwidth. 

D. Optimizafion of Correctors 

When the number of correctors N is larger than C, the 
number of coupled channels, the correctors can then be 
optimized in various ways. Between successive corrections of 
the closed orbit, some of the correctors can be close to 
saturation, thus preventing any further corrections. In this 
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case, if N is larger than C, the decoupled t-correctors can be 
used to relieve those correctors. 

Let V, be the submatrix of V that corresponds to the 
decoupled t-correctors. That is, 

V,ij = Vij+C. (lIi<N,lIjIN-C) (19) 

The desired corrector strengths change, A&, is transformed in 
the subspace of t-correctors spanned by the corrector basis 
vectors vj (C+l < j < N) and then inverse-transformed. The 
resulting A&’ given by 

Ae,’ = V,.Vf~AO, (20) 

will then be the closest to the A8, while disturbing the orbit 
the least. As a special case, when A& = 0, we have 

IAeI = IAe’I = ($ lAf3+)1’2 

since AO\ = 0 for the decoupled t-correctors (C + 1 < j 5 N). 
That is, IA81 given by Eq. (21) is the minimum value possible. 
Particularly, when C = N, it is the absolute minimum among 
all solutions that satisfy Eq. (8). 

In a similar manner, if 0 is the current corrector strengths, 
8’ given by 

8’ = Ri,,,R,O. (22) 

will minimize the overall corrector strengths. In case N > C, 
further optimization can be done by applying Eq. (20). 

III. ANALYSIS OF THE APS STORAGE RING 

In this section, we will analyze global orbit correction for 
the APS storage ring in the vertical plane. There are 40 sectors 
in the machine and each sector has nine BPMs (total 360) and 
eight correctors (total 320) available for global orbit 
correction. The distribution of BPMs and correctors is 
identical for all sectors. 

Figure 1 shows the plot of the BPM basis vectors IJ,, and 
Ui2 as functions of the BPM index i. These vectors are 
mutually orthogonal and correspond to the largest eigenvalues 
w1 and w2 equal to 1.140~10’ n&ad. They also have the same 
frequency as the integer tune (vv = 14.2987) of the machine, 
which means that perturbation with the harmonic number 14 
can be corrected the most efficiently. The first two corrector 
basis vectors Vjl and Vj2 show similar behavior. 

Figure 2 shows the eigenvalues w, (1 5 n 5 320) in 
descending order when all BPMs and correctors are used. The 
maximum and minimum values are 1.140~10~ and 9.126x10-? 
(E, = 8.005x lO-s) in units of m/rad, respectively. The 
machine periodicity is exhibited in the discontinuous changes 
of w, at every 40. The large decrease at n = 240 indicates that 
80 of the correctors are redundant and therefore do not 
contribute much to orbit correction. These correctors have the 
smallest values of the function 

E(i) = x W,Vjn2. (1 I j I320) (23) 
n 

When those correctors are removed, E, becomes 6.656~10~. 
The function E(j) is a measure of the efficiency of the j-th 

corrector, A similar function can be defined for the BPMs and 
these functions can be used to select a subset of BPMs and 
correctors with the condition that E, be maximized. 
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Fig. 1: The BPM basis vectors Uil and Ui, (1 I i 2360) for the 
most strongly coupled channels (wl = w2 = 1.140~10~ m/rad) 
in the vertical plane (vv = 14.2987) for the APS storage ring. 
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Fig. 2: Plot of the eigenvalues in descending order for the APS 
storage ring. M = 360, N = 320. E, = 8.005~1@~. 
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