
Switching the Fermilab Accelerator Control System to a Relational Database

S. Shtirbu (shtirbu@fnal.fnal.gov)
Fermi National Accelerator Laboratory 1

P. 0. Box 500
Batavia, IL 605 10

The accelerator control system (“ACNET”) at Fermilab is
using a made-in-house, Assembly language, database. The
database holds device information, which is mostly used for
finding out how to read/set devices and how to interpret
alarms. This is a very efficient implementation, but it lacks
the needed flexibility and forces applications to store data in
private/shared files. This database is being replaced by an of-
the-shelf relational database (Sybase2). The major constraints
on switching are the necessity to maintain/improve response
time and to minimize changes to existing applications.
Innovative methods are used to help achieve the required
performance, and a layer seven gateway simulates the old
database for existing programs. The new database is running
on a DEC ALPHA/VMS platform, and provides better
performance. The switch is also exposing problems with the
dam currently stored in the database, and is helping in cleaning
up erroneous data. The flexibility of the new relational
database is going to facilitate many new applications in the
future (e.g. a 3D presentation of device location). The new
database is expected to fully replace the old database during
this summer’s shutdown.

I. INTRODUCTION

The accelerator control system is using a made-in-house,
hierarchical, based on indexed files, client-server, database
manager (called DBM). The current implementation is in use
since 1985 [l&2]. The implementation uses code-based
protocol (e.g. in order to read setting information one needs to
know the code associated with the setting property). In the
past eight years there were very few changes made in the
database, the reason being the complexity of providing new
functionality since both the client and the server sides have to
be changed to support new features, which is an expensive
ordeal, especially due to the usage of Assembly language. The
lack of flexibility in the central database forces many
applications to create their own representation of data stored in
the database (by reading the whole database and storing the
information in new files, or by analyzing the changes made in
the database). A great deal of other device-related information
ends up in private/shared files, and even in source code. The
inconsistency in interfaces and sources of information creates
an unmanageable situation (a device might be deleted from the
central database, but information related to the device and
dependencies on the device are still present in private/shared
files, and hidden inside applications). In addition, there is no
trivial mechanism to query the database in ad-hoc fashion, and

1 Operated by the Universities Research Association, Inc.
under contract with the U.S. Department of Energy.
2 Sybase is a registered trademark of Sybase Inc.

as a result, there are many inconstancies even in the central
database. Even with all these problems, the database provides
good service to the control system, since problems are rectified
when encountered.

The advantages of a relational database, supporting the
ANSI SQL protocol, over the above, are overwhelming: on-
line changes in table structure, ad-hoc queries, ability to
enforce referential integrity, and many others. But relational
databases have one major deficit - they are much slower than a
customized, application dependent, Assembly language,
implementation. Fortunately, CPU performance is improving
fast, and can help relational databases achieve sufficient
prfonnance.

Switching from one database to another is not a simple
task. The existing data has to be loaded to the new database.
Existing query protocols have to be supported. Existing tools
which directly accessed the database files, DBM audit files, or
DABBEL files (DABBEL was the language used to
insert/update DBM) must be converted to use a new interface
(or rewritten). A new device entry/manipulation tool, that can
support the new fields in, and different organization of, the
new database has to be written.

II. RELATIONAL DATABASE PERF~RMAN~E[~]

We tested several products. The performance tests were
done on parameter page queries (which probably are the most
common queries in our environment, though not the most
complex ones). Conversion programs were written to take
DBM files and generate ASCII, ready for load (i.e. first normal
form), version of them. This way we could load our real data
to the database, and get meaningful benchmarks. There are
many benchmarks available in the literature, but the results
they report vary widely, and none of them seems to resemble
the type of activities in real-time environments. We also
realized a major problem regarding I/O. DBM did cache
information from the files, and so do most databases in the
m‘arket. But the caching algorithm used by most relational
databases is LRU (least recently used), and is not aware of the
logical meaning of the data. Therefore, one might wipe out all
the cached information by querying a large, relatively low
usage, table (e.g. we have a table holding ail the last settings
sent to devices). There is only one way to overcome this
problem, and that is to provide enough memory to allow the
whole database to reside in cache. It is not very hard to do,
since our database is small in database terms (less than 30
MB). We realize that the size is going to increase drastically
over time (we have over 300MB of shared files), but for the
time being, it is feasible to put enough memory in the server
machine to provide full caching (in the future, we might move
large, non critical, tables to a separate server node).

In our testing, we discovered a major problem with most
relational databases - the client library is very slow. The

0-7803-1203-l/93$03.00 0 1993 IEEE 1934

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993

reason the client’s performance is very important to us is that
the users see only response time - they do not care where the
time was spent, and our need for a gateway to the DBM
protocol provided us with a unique opportunity to time the
performance of both the server and the client.

Our testing proved that using a relational database is
feasible for our control system. The product we chose was
Sybase, which had the best performance overall (simple and
complex queries).

III. DBM-SQL GATEWAY

As mentioned above, we have to support existing
applications with the least impact. The most natural way to
use relational databases is to use their client libraries (or pre-
compilers which produce the calls to the client libraries). This
solution can not work for us since we have database clients
residing in front-ends, running real-time kernels -- and no
vendor has client libraries available for pSOS, MTOS or even
VxWorks... One way to resolve this problem with minimal
impact is to build a layer seven gateway. This gateway
receives (via ACNET, our home grown protocol) requests
using the DBM protocol, translates the request to optimized
SQL, calls the applicable client library routines to retrieve the
data, translates the replies to DBM protocol, and sends the
reply back to the requester. As far as existing applications
programs and other DBM clients are concerned - nothing has
changed, even devices added to the database after the switch to
Sybase will be fully accessible by existing applications.

Our gateway also supports SQL requests from
applications. The major benefit of doing so is providing a very
simple interface for applications to access the database: all an
application needs to provide is the applicable SQL statement,
and the address of an array of structures where the data retrieved
from the database should be put. The application (or other
clients) need to call only one procedure. In addition, using the
gateway to interact with the database simplifies monitoring
and management of database access, and allows us to
implement diverse security/priority schemes (e.g. based on
client’s node id). The applications can also benefit from
multiple asynchronous requests and packeting of large
requests/replies provided by the client’s access routine. Hiding
the vendor’s client library routines from the user also removes
the dependency on a specific vendor’s interface, and drastically
simplifies switching to another vendor’s ANSI SQL server in
the future (not that we see a need for that).

The gateway is multi-threaded, to optimize SQL server
utilization. Currently, the gateway runs on the SQL server’s
machine, but that is not required. The gateway is going to
support TCP/IP and UDP access to the database in the future
(in addition to ACNET).

IV. UPDATING DEVICES

DBM uses a special device update utility (called DABBEL).
This utility parses text files containing keyed values. The
utility does not support interactive changes. Updates are done
directly on the physical files.

The new database is adding many fields and tables (DBM
has tables that store unstructured information that have to be
spread between multiple structured tables). It is clear that the

effort needed to change DABBEL to support the changes in the
underlining database is not worth the effort.

Instead, an interactive device entry application is on the
works (Lee Chapman is responsible for this effort). The
interactive utility is a regular application. This application
uses multiple windows and some graphical displays to assist
in inserting or updating a device. Thanks to its interactive
nature, this application eliminates the mystery from updating
devices, and allows one to make changes to the information
stored for a device and run an application on another window
to see the impact the changes had. The user can easily compare
the characteristics of two devices, and copy any property from
one device to the other. In the future, this utility will be
enhanced to provide logical assistance in entering devices (e.g.
it will become aware of correct device entry requirements for
different types of devices).

V. AUDIT

DBM has a basic audit facility. The audit trail is based on
the DABBEL tokens used for updating a device, and can keep
track of whom updated what property, and when. The
information is stored in a separate file, and a special interface
is used to access it. The new database is expected to provide a
better audit trail.

The new audit trail keeps track of changes at the field level,
and stores the previous value of each modified field. Since
the audit information is available from the device update
application, recovery from erroneous changes becomes trivial.

VI. BACKUP & RECOVERY

Relational databases tend to be very good when recovery is
concerned. They support rollback of transactions, and can tell
which transactions were complete when the machine losses
power, and roil them forward.

We intend to keep a backup database server, used mainly
for development and complex reports. The backup server is
going to be at most 10 seconds off the operational database,
using a Sybase tool called Replication Server. The backup
database will maintain multiple copies of the database, to
allow logical recovery of information (existing databases do
not support recovery at the table level from a backup file).

VII. SUPPORTED TOOLS

Following are examples of issues that need to be addressed
when one is switching databases, in order not to lose existing
functionality:

DBM has a simplistic report generating tool, mainly for
CAMAC devices. The tool was written years ago, and was
never updated to support emerging driver types. This tool has
a temporary replacement, which replicates the functionality,
supports new device types, and is two orders of magnitude
faster. The intent is to make this tool part of an application
page, in which the user can even choose the data fields desired
in the report.

There is a special application used by operations to decide
which properties of which devices are important for machine
operations, to be able to tell if a restore went smoothly for all
the important properties. To generate the data for this

1935 PAC 1993

application, once a week, DBM files are scanned to learn about
changes. The support for this application is now available in
the database, and the information is automatically updated
when changes are made.

There is a special utility to load changes in devices from
the linac control system (written by William Marsh). The
linac control system has its own device database, which is
considered the source of information about linac devices. The
utility produces DABBEL files, and has been converted to
generated the needed SQL to update the relational database.

VIII. DEPLOYMENT

[2] S. Sommers, at al, “An Editing and Reporting System for
Fermilab’s Accelerator Controls System Database”, in
Proceedings of the Second International Workshop on
Accelerator Control Systems. Los Alamos, NM, October,

Unfortunately, DBM and the new database can not co-exist.
1985, pp. 259-263. ’

Loading all DBM files into the relational database takes close
[3] S. Shtirbu, “Using a Relational Database in a Real-Time

Environment”, in Proceedings of the fifth Sybase User
to a weekend, and is done infrequently. We are almost ready for Meeting & Training Conference , San Jose, CA, April, 1993.
the switch (only the device entry application is not finished

business applications enjoyed for the past two decades, are
now readily available to real-time applications.

XI. REFERENCES

[I] A. Wailer, “The Fermilab Accelerator Control System
Database”, in Proceedings of the Second International
Workshop on Accelerator Control Systems, LOS Alamos, NM,
Octohcr. 1985. pp. 251-258.

yet). A great deal of testing took place, with actual
applications, and the results were satisfactory (the performance
tests where done on VAX station 4OOO/60 which is 7 to 10
times slower then the AXP platform). The actual switch is
expected to take place before the end of the accelerator
shutdown, this summer.

There is a somewhat surprising side-benefit we are already
enjoying, even though we have not switched databases yet.
Since the first time data was loaded from DBM files to the
Sybase database, the relational database has been used to find
erroneous device entries, provide ad-hoc reports, and even find
bugs in DBM (which went unnoticed for years). The
availability of a good ad-hoc access to the data (using the SQL
interface provided by Sybase) also is also substituting the need
for code development.

IX. EXPANSION

What is the future of using the new database in the
Fermilab control system? We hope to move as much as
possible private and shared data used by applications into the
database. The major justification for that is the simplification
of maintenance of both applications and of the data used by
them. Other benefits are: improved performance, improved
integrity, better control over content and size, better security
mechanisms, simplified system management.

Many new applications, taking advantage of the dynamic
nature of the new implementation, are also expected.
Questions that could not have been answered before without
writing complex programs, are now a SQL query away. New
tables are designed and are waiting for data (e.g. geographical
location of devices, to be used for simplified alarm analysis
and other graphical representations). Many of the
improvements in the Fermilab control system in the next few
years are expected to be related to, and benefit from, the new
database.

x. CONCLUSION

Switching real-time control systems to relational databases
is possible and very beneficial. The benefits include:
simplification of application maintenance, and improved
consistency and integrity of the data stored. The same benefits

1936
PAC 1993

