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Abstract’ 

We report on the application of four different methods of 
computing the S Matrix for 2-port microwave circuits. The 
four methods are modal expansions with field matching 
across boundaries, time domain integration of Maxwell’s 
equations as implemented in MAFIA, HFSS (high frequency 
structure simulator), and the KKY frequency domain method. 
Among the applications to be described are steps in 
rectangular waveguides and irises in waveguides. 

I. INTRODUCTION 

The Kroll-Kim-Yu (KKY) [l] method of 
determining the S matrix of 2-port microwave circuits is an 
elementary algebraic procedure which can be used in 
conjunction with any computer program which determines 
the resonant frequency and electromagnetic fields of closed 
cavities. As such it may be thought of as supplementary to 
computer codes which accomplish the same objective, but 
which may not be available to a particular user. It may also 
be used to provide mutual validation of alternate procedures. 
While the basic theory of the method is given in [ 11, no actual 
examples were presented. The purpose of this paper is to 
remedy this deficiency, and thereby to demonstrate the 
practicality of the method. As an example of the symmetric 
case we discuss reflecting iris design in circular waveguide 
for application to SLED II [2]. As an example of the 
unsymmetric case we chose a transversely symmetric H-plane 
step in rectangular waveguide (i.e. a discontinuous increase 
of waveguide width). As will be discussed below, this simple 
geometry allow us to compare the KKY results with those 
obtained from highly accurate mode matching calculations. 
Comparison with other lattice based computer codes will also 
be given. 

II. THE KKY METHOD 

A. Description Of The Method 
Following [l], we consider a lossless 2-port and 

parameterize its S-matrix as follows: 

s,, = --cW9expM++d+)l (1) 
S,, = S,, = -j sin(B)exp( j+) (2) 

tSupprted by Dcplment of Energy, DE-AC03-76SF005 15’. DE-FGO3- 
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S = -cosWexpLi(4 - @)I (3) 
Unique%lues for the parameters 8, 0, and d$ as functions of 
frequency are defined by restricting their ranges as follows 
:-x/2<85n/2,-x/2<d~5x/2, and -x<+<x. From 
the definition of the S matrix: 

b, = Sia, (4) 

where a, and b, are incoming and outgoing wave amplitudes 
respectively. 

Now let us suppose that we have available the field 
contiguration and frequency of some mode of the 2-port 
transformed into a closed cavity by shorting the waveguides 
associated with the ports at distance L, from the reference 
planes. We consider here only the case in which one has 
single mode propagation in each waveguide. Then we have: 

b, /a, = -exp(2jw,) 

a, /a, = rexpIj(w, - w,>l 
(5) 

where w, is k,L, and r is the ratio of the incoming wave 
amplitudes evaluated at the shorts The wave amplitude ratio 
r is readily computed from appropriately chosen field 
amplitudes as will become clear from the examples. 
Substituting Eqs. (3) and Eqs. (1) into Eqs. (2) provides us 
with two equations for the three unknown S matrix 
parameters. Through algebraic and trigonometric 
manipulation we obtain explicit expressions for 8 and 6 in 
terms of the known quantities v, and r and the unknown do: 

tan@) = 2 sin(dy/) / (r - 11 r) 

where dyl = w, - w1 -d$, and b is defined in [l]. 

(6) 

B. The Symmetric Case 
A symmetric structure with symmet.ricaIly selected 

reference planes has S,, = S,,, and hence d$ = 0. Thus for 

such circuits (provided we have chosen L, f L,) these 
formulas determine the complete S matrix for each frequency 
which appears in the mode spectmm of a computer run. 

We have applied the method to the design of a 
number of circular iris’s in circular TE,, waveguide. For 
application to SLED II, design to a specified value of 
reflection coefficient was required. The iris thickness was 
specified for mechanical reasons to be .080 inches, the 
waveguide diameter was 1.75 inches, and the problem was to 
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determine the correct iris diameter. Three URMEL runs were 
carried out, one for each of three choices of iris diameter, and 
each with the waveguides shorted at 2.15 inches and 1.80 
inches respectively from the center of the iris. 

The quantity r for this configuration is given by the 
negative of the ratio of the maximum magnetic fields at each 
end. The sign is to some extent a convention, but with this 
choice, S,, is unity when the iris diameter coincides with the 
waveguide diameter. This cotiguration yields eight modes in 
the frequency range lying between the cutoff frequencies of 
the TE,, and TE, modes, and S matrix parameters could 
have been determined for all of them. This was actually 
carried out, however, only for the three frequencies closest to 
the design frequency, 11.424 GHz, of SLED II. The 
parameters at the design frequency were obtained by 
interpolation from these data at each of the three diameters, 
and the diameter required to provided the specified reflection 
coefficient was again found by three point interpolation from 
these numerical values. Experimental values were obtained 
in the course of the SLED-n measurements reported in [Z] 
and are in excellent agreement with the theoretical values. 

Since the completion of the above, the mode 
matching program to be discussed below has been extended to 
allow very accurate evaluation of the S matrix for these iris’s, 
The curves obtained with the mode matching method are 
shown in figure 1 (the points are obtained with the KKY 
method). 

Figure 1: Reflection Coefficient of Circular Iris 
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C. Application To An Asymrnetic Case 

We have seen in the previous section that from a 
mode at a specific frequency with a specific choice of shorting 
lengths we get two equations for determining the three S 
matrix parameters. To obtain additional equations it is 
merely necessary to find a different pair of shorting lengths 
which produces an independent solution at the same 

frequency. There is, in fact, a continuum of (L,, L,) pairs 
which satisfj this condition, but one such is actually more 

than enough. That is, from a second set with, say L’, , L’,, and 
an associated r’, we have four equations for the three 
parameters. We can obviously write down a set of 
expressions analogous to Eqs. (6) and the associated equation 

for & in [l] in terms of the primed quantities and temporarily 
designate the associated S matrix parameters as primed 
quantities. Then setting d+ = d+’ and setting tan@) equal to 
tan@‘) in the unprimed and primed versions of Eq. (S), we 
obtain: 

tan = ((r’-l/ r’)sin(Dw) - (r-l/ r)sin(Dw’)] (7) 
[(r’-l/r’)cos(Dyl) - (r-l/r)cos(Dy,‘)] 

whereDv==,-\y,. Wernaythenobtain+and+‘fiomEq. 
(6) and its primed counterpart using d+ as obtained from Eq. 
(11). They should, of course, be equal to one another and the 
extent to which this will be found to be the case depends upon 
the accuracy of the computer programs which produce the 
input data and the accuracy with which the frequencies of the 
primed and unprimed cases have been matched. 

As a test of the practicality of the KKY method in 
the asymmetric case we considered a rectangular waveguide 
in which the width increased from 0.4 inches to 0.6 inches. 
With L, and L, measured from the junction equal to 1.1 
inches and 1.3 inches respectively, a MAFIA computation 
produced eight modes in the frequency range between the 
TE,, and TE, cutoffs. (Because the junction is transversely 

symmetric there is no coupling between the TE,, and TE, 
modes.) MAFIA runs with equal lengths of 1.2, 1.25, and 1.3 
inches produced corresponding sets of eight modes whose 
frequencies bracketed each of the modes of the unequal 
length set. The L, = L, values needed to match each of the 
eight frequencies of the unequal length run were determined 
by interpolation from the three equal length runs. The 
associated r values were determined by interpolation from the 
r values from the three computed lengths. To determine the r 
values we used r = -K(H, /H,) where the H, are the 
maximum magnetic fields at the ends of the waveguides and 

K is given by: K =[(f’ - fb)/(f’ - fan)]“‘, where f and f, 
are the mode frequency and waveguide cutoff frequencies 
respectively. Thus four MAFIA runs yielded the data to 
compute the S matrix parameters at eight frequencies, 
providing thereby a comprehensive description of the 
behavior of the S matrix over a broad range of frequencies. A 
subset of results obtained will be shown in connection with 
those obtained by other methods in the next section. The + 
values to be shown were obtained from the unequal length 
set. The discrepancies between them and those obtained from 
the interpolated equal length set were very small, a result 
which provides us with a consistancy check. 

III. COMPARISON WITH OTHER METHODS 

The S matrix of both the circular iris and the H- 
plane step can be very reliably and accurately computed by 
the mode matching technique. In order to ascertain the 
veracity of the KKY method we conducted a detailed 
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w&en utilizing the mode matching method, MAFIA in the 
time domain and HFSS. 

The mode matching method entails a decomposition 
of the tangential electromagnetic field in region 1 into the 
form: 

E, = E(a; exp[-jkyz]+by exp[jk;z])ge; 
n-1 

(8) 

H, = z(a: exp[-jk:z]-b: exp[jk;z])fihf 
ICI 

(9) 

where e and h are the characteristic mode l%nctions of the 

structure, k; is the wavenumber of mode n and, Y,n = I/ 2; is 
the characteristic admittance of mode n. A similar expansion 
of fields is made in region 2. The electromagnetic fields on 
both sides of the waveguide junction (z = 0) are equated to 
each other and this results, in principle, in an infinite set of 

coupled equation for the mode coefficients a;, a;, by and b;, 
which in practice, are truncated to N in region 1 and M in 
region 2. The solution to these equations for a WN (wide to 
narrow) transition enables the normalized generalized 
scattering matrix to be obtained in the compact form: 

s,, = Y’yY+Y,)-‘(Y -Y,)Y”, 

S,, =Y”‘[2a(++Y,)-‘I?“’ 

S,, = +“[2a-‘(Y +Y,)-‘]Y-“* 

s,, =~lR(~+Y~)-I(~-Y~)ji-u2 

(10) 

(11) 

(12) 

(13) 

where a is the matrix of scalar products of mode functions 
integrated over the cross-sectional area of the aperture region, 

Y and ?are diagonal matrices with elements Y,” and Y,” 
respectively, and the admittance of the smaller waveguide 
viewed from the larger and vice-versa, respectively, are given 
by: 

Y, = (a-‘)‘?a-‘, and Y, = a’Ya (14) 

The above relation reveals the interesting result that the 
impedance of the smaller guide, viewed from the larger 
waveguide, is given exactly (i.e. no matrix inversions are 
required), in terms of a summation of the product of matrix 
elements. Moreover, the above results for the scattering 
matrix are applicable to both an H-plane step and to a 
transition in the radius of circular waveguide. Furthermore, 
for a WNW (wide to narrow to wide) transition, as is apposite 
to the SLED-II iris, the overall S matrix may be obtained by 
using the inherent symmetry properties of the system (31, or 
by cascading [4] the WN matrix with a matrix corresponding 
to a shift in phase along the length of waveguide and, with a 
matrix corresponding to a NW transition; the latter matrix is, 
of course, readily obtained from the WN matrix. In our 
computations we have utilized both methods to provide a 
check as to the efficacy of the calculations, 

A representative sample of S matrix parameters as a 
function of frequency (GHz) for an H-plane step in 
rectangular waveguide is shown in table 1. for four different 
methods, namely, MM (mode matching) using both the 
cascaded approach and the symmetrical approach (the 
difference between the two methods is in the eighth decimal 
place), KKY, MAFIA applied in the time domain, and 
HFSS. 

Table 1: S Parameters For An H-Plane Step 

I I I I 
1 -1.22843 1 -1.40268 1 1.02089 1 KKY (0) 

-1.22847 -1.40105 1.02126 MAFIA(t) 

-1.22632 -1.3873 1 .983884 HFSS 

17.7145 -1.37354 -1.44954 .85424 1 

-1.37297 -1.44981 .841649 KKy (0) 
-1.37283 -1.44762 .840349 MAFIA (1) 

-1.37179 -1.45437 .811546 HFSS 

19.3840 -1.43435 -1.47581 .694889 MM 

-1.43368 -1.47632 .678899 KKy (0) 
-1.43364 -1.47447 .678542 MAFIA (t) 

I I L I 

1 -1.43185 1 -1.48811 1 .630695 1 HFSS 

The agreement between MM, KKY, and MAFIA in the time 
domain, for 4 and 8 is encouraging. This indicates that the 
absolute value of either the reflection coefficient or the 
transmission coefficients and indeed, the phase of the 
transmission coefficients, may be quite reliably obtained by 
either method. However, the values for d$ only agree in the 
first and second decimal place, indicating that the phase of 
the reflection coeflicients of the S matrix is somewhat less 
reliable. 
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