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Transient signals in strings of resonators consist of regimes Let us assume a single resonator which is driven by a gen- 
with different time constants: high frequency oscillations, erator via some coupling device, Fig. 1 
beat signals and exponent&r. If one is interested only in 
the signals envelope one can transform the system of sec- .* 
ond order differential equations into a system of first order 2 R i 
differential equations. The later carries fast varying terms, 
which are averaged out, and slowly varying terms. The re- 

R’ L 
C 

i*=i’,sin w,t 

sulting equations are well behaving and can be integrated 
numerically. Results are shown for the filling process un- a 

der beam loading of the superconducting nine-cell TESLA 
cavity. Figure 1: Single resonator driven by a generator with 

transformed current i’ and internal impedance R*. 

I Introduction 

Transients in strings of resonators are usually calculated 
by means of a Laplace transform in matrix notation or by 
a discrete Laplace transform (see for instance [I]). Both 
approaches become quite awkward if the string is not ho 
mogenous and/or has branches. Also, one is often not 
interested in the full time response but only the signals 
envelope. Then, it may be convenient to take advantage 
of the fact that the system consists of three regimes with 
normally very different time constants: First, the high fre- 
quency oscillations with the time constant TRF of one pe 
God. Second, beating signals with time constants T’F/~ 
where L is the coupling between resonators. Third, signals 
which are related to the filling time Q/WRF. 

twice the size. The system is written in a way that the fast 
varying terms can be averaged out and only slowly varying 

In the following it is shown how to transform the system 
of second order differential equations (DE) describing the 
individual resonators into a system of first order DE’s of 

‘* 1 and R* are the generators current and impedance 
transformed by the coupling device. The loop equation 
of the circuit can be written as 

ij + 24 + wgq = fo sin wel (1) 

q=Jidt,wo=&, QL=&, f,,=+;. 

For q we try an ansatz called variation of constants 

q(t) = a(t) cosw~d + b(t) sinwst (2) 

(l), (2) are two equations for three unknown functions q, 
u, b. Hence, we can impose a third condition which we 
choose as 

(b+*)cos&-(rYr+~)sinwet=&sinwct. 

ir coswc2 + i, sinwst = 0 . 

(4) 

(3) 

Differentiation of (2) while considering (3) and substituting 
into (1) gives 

terms remain. The left over system of DE’s is integrated 
numerically yielding the signal envelopes. 

Now, multiplyjng (4) with sinwct and (3) with coswst we 

The method is applied to the filling process of the su- 
can eliminate b through substraction. In a similar way we 

perconducting ‘I’ESLA cavity consisting of nine resonators. 
eliminate ti and obtain a system of first order DE’s 

Due to the high Q of the cavity the filling time is of the 
order of one rr~s whereas the RF period is less than one ns. 
‘l’hr coupling between cells is in the percent region. Thus, 
the time constants are well separated and the proposed 
Inettiott is ideally suited. 

h-t-$&a+&= 

= $&(u us 2uot + b sin 2wel) + & cos 2wot 
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b-tab= 

= a(u sin 2wet - b cos 2wot) + & sin 2wst . (5) 

So far, equ. (5) is still exact. We only have transformed 
the second order DE (1) for q into two first order DE’s 
for a and b. Not much seems to be gained. But (5) is 
well suited to determine approximately a and b if they are 
slowly varying, i.e. if they do not change much over one 
period Te = 27r/ws. Then, we can average the equs. (5) 
over Te and the right sides become zero. The solutions of 
the remaining left sides are straight forward. 

III Transients in a Chain of Cou- 
pled Resonators 

Next we consider a chain of N coupled resonators, Fig, (2). 
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Figure 2: Chain of N coupled resonators driven by gener- 
ator currents 2: and beam currents ib,,. 

Each resonator is coupled to a generator with trans- 
formed current ii and impedance K. The beam currents 
ib,, are assumed to be b-function like, so they can be taken 
into account as a jump in q,, at any instant t. Then the 
second order DE’s for each loop can be written in a matrix 
notation 

(6) 

Pn = RZ,lR, wo” = 1/LC, QO = woL/R, k = L/M 

In order to solve the system (6) we try an ansatz 

q = Q[Ca + Sb] , ;1= Q[Cil+ Sb - wSa + wCb] (7) 

where 

a= [ “:I:‘],bz [ yi] Q= [ “: :;: y;] 

and w, C, S are diagonal matrices with elements Vi, 
coswit, sinwit, respectively. q(t), hi(t) are the slowly vary- 
ing amplitudes in each cell and w;, qci) are the eigenfre- 
quencies and eigenvectors of the steady-state, losefree, 
homogenous system respectively. The latter can easily 
be derived with standard matrix algebra as for instance 
treated in [2]. F or a so-called flat-tuned r--mode struc- 
ture they are given as 

wi fwg = (1 - 2k cos i+)-‘i2 , Q = m/N 

qp = sin [(n - $) if#] I/m. (8) 

Similar to the case of a single resonator, we impose the 
condition 

ca+sL=o (9) 

in order to reduce the degree of freedom for the functions 
in (7). After differentiating (7) once more and making use 
of (9) we substitute (7) and i into (6) and find 

A(C6-Si)+g(I+@)Qw(Cb-Sa)+M(Ca+Sb) =f 

(10) 
withA=(I-kK)Qw, M=wiQ-Aw=O. 
M is the system matrix of the steady-state, lossfree, ho 
mogenous case and thus vanishes. 

Because of the Unitarian character of Q, Q-’ = Q’, we 
can invert A and obtain for (10) 

cLsii+ &(w + Pw)(Cb - Sa) = $wQ’f (11) 

with P = QtPQ. Successive elimination of a and b from 
(9) and (11) yields 

h + --& [w2(S2a - SCb) + wSP(Swa - Cwb)] = 

= -&wSQ’f 

b+ & [w2(C2b - CSa) + wCP(Cwb - Swa)] = 

= &wCQ’f (12) 

In (12) we find again products of sine- and cosine- 
functions which we decompose into slowly and fast varying 
terms, e.g. 

SiIl(W;t) COS(Wjt) = [SiIl(Wi - Wj)t + Sin(Wi + Wj)t]/2 . 

Now, we average the system over a time span approxi- 
mately equal to the period of the fast varying signals and 
obtain, finally, the system of first order DE’s for the slowly 
varying signals 

ci + &[w(I + P,)wa - wP,wb] = -&wR, 

i+’ 2woQo [w(I + P,)wb + wP,wa] = - &wR, (13) 

where 

P, = 

PlZ COB(W1 - wz )t p13 cce(w1 - w3)t . . * 

P22 P23 cos(wz - wl )t 
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R, = 

L 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 
P,, R* are equal to P,, R, with the cosine replaced by 
sine. The system (13) yields non-oscillating solutions and 
is very stable. It can easily be integrated over lo5 periods 
T = ~T/(w; - wj), f or instance with a fifth order Runge- 
Kutta method. The initial conditions are normally given 
in q and 4 and define a(0) and b(0) by (7) and (9). 

The beam currents can be taken into acount by jumps 
in qi and continuity in &, i.e. by Sq(tj). Then, from (7), 
(9) follows 

Sa(tj) = C(tj)Q’bq(tj) , Gb(tj) = S(tj)Q’Sq(tj) . (14) 

Baving solved for a, b we are still left to find reasonable 
envelopes from (7). S ince, typically, the resonator chain is 
driven by a single generator with frequency won and the 
particles to be accelerate have to stay in phase with wont 
it is best to develop all frequencies around won, e.g. 

COSWit =COSSWit-COSWOnt -sinbWit .sinwo,t . 

then, (7) can be written as 

q = Q[(SCa + 6Sb) coswO,t + (6Cb - SSa)sinwont] = 

= &[a* coswOnt + b* sinwo,t] (15) 

where SC, 6s are diagonal matrices of cos bit and sin Suit 
respectively. (&a*); is now the envelope signal in cell 
i which is relevant for particles in phase with coswg,t. 
(Qb*)i is a signal which decays and which rings with 
sinwe,t, i.e. it is out of phase with the particles. 

IV Filling of the TESLA Cavity 

As an example we choose the filling process of the super- 
conducting cavity for the TESLA linear collider study. The 
cavity is a nine-cell, flat-tuned, z-mode structure. It is 
driven by a generator in the first cell. We assume that the 
beam induced voltage is half of the voltage generated by 
the driver. Then, the cavity voltage stays constant after 
the time to = rln 2 when the beam is switched on. r is 
the filling time 

2Qo I-= = 0.832 ms 
w r (1 + Pl)q!g)2 

The parameters used are 

f,, = fog = 1.3 GIIz, Qs = 3. log, R/Q0 = 112.3 R/cell 

,& = 9.882 = 7938 generator coupling constant 

L = 115.4 mm cell length 

k = 0.0185 cell-t-cell coupling 

Tb = 1 11s bunch distance, Nb = 800 # bunches 

N, = 5.10” #e-/bunch (16) 

Fig. 3a shows the exponential increase of the cavity volt- 
age and its flat top under beam loading. The curve is an 
overlay of the voltage envelopes in the first and the nineth 
cell. A zoom of the curve for very short times, Fig. 3b, 
and for the first and last bunches of the beam, Fig. 4, re- 
solve the different signals in the cells. Evaluating the time 
delay between the filling of the 1st and 9th cell, see Fig 3b, 
clearly proves that the wavefront in an empty cavity trav- 
els with the average group velocity in the passband, i.e. 
with essentially the group velocity at the z/2-mode. The 
same is true for the refilling of the cavity when a bunch 
has taken out a certain amount of the energy. From Fig. 
4 it can be seen that field levels are different in every cell 
and that the differences are larger at the beginning of the 
beam. But averaging over all cells only results in a maxi- 
mum voltage variation of about 0.5 “/00 for the bunches. 
Finally, a study of the voltage sensitivity AV at the end of 
the beam against changes in the bunch charge AN, gives 
AVIV M 0.4 AN,/N,. a) 1 
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Figure 3: Filling process of the TESLA cavity with beam 
for t > to. a) Voltage envelopes in the 1st and 9st cell, b) 
zoom for small times. 
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Figure 4: Blown-up curve of Fig. 3 for the a) first and b) 
last bunches of the beam. 
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