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Abstract 
The numerical investigation of the hollow high-current ion 

beam (HHCIB) dynamics in two magnet-isolated accelerating 

gaps of induction linac are presented It has been shown 

that the applied electric field destroys partially the charge 

and current compensations, and impairs the brightness of the 

ion beam when the electron beam energy is not sufficient 

to overcome the potential difference. The acceleration, the 

charge and current compensations, and the stability of the 

high-brightness ion beam can be achieved under the optimum 

parameters choice. 

I INTRODUCTION 
Several approach to producing high-current ion beams 

by means of induction accelerators are now considered for 

controlled thermonuclear fusion research [l] 

One of these methods involves the transport of several 

beams with sourse currents of N 1A in a vacuum with sub- 

sequent current enhancement by raising the energy through 

combining the beams and bunching in an accelerating pulse 

[2]. Another way of obtaining a large beam current at low ki- 

netic energy makes use of the collective focusing techniques 

in which the space-charge forces are balanced by neutraliz- 

ing the beam ions with electrons, while the electron current 

is suppressed by the magnet-isolated accelerating gaps. At 

present kiloampere ion beams are obtained from this type of 

linear high-current induction accelerator (linac) (see e.g. [3] 

and Refs. in that). A number of important physical prob- 

lems discussed in [3] must be studied since the power and 

brightness requirements for ion beams in the controlled ther- 

monuclear research are very stringent. 

The previous study [5] has shown that without the accel- 

erating field i) charge and current compensations of the ion 

beam by the specially injected electron beam occur; ii) the 

ion beam is stable for the time greater than the reciprocal 

Larmor and Langmuir ion frequencies. Here we present the 

results of our numerical investigation of the electron and ion 

beams dynamics in a two magnet-isolated accelerating gaps 

II EQUATIONS 
,nco The dynamics of a collisionless plasma in both the self- 

tinsistent and the external electromagnetic fields in axisym- 

metric (a/a@ = 0) geometry, is described by the set of rela- 

tivistic Vlasov’s equations for the distribution functions of a 

given type (s) of particles fs(e, E, t). Here p’ = rn, CT, ?; = 

{i~,Tti,i},y= [1-(I;l/~)2]-1’2,~={~Iz}. 
The self-consistent electromagnetic fields in Vlasov‘s 

equation are determined by Maxwell’s equations, which in the 

Lorenz gauge (rlivX+ 5 al 1 6% = 0) take the form of wave equa- 

tions for the dimensionless scalar $(n,z) and vector .fi(r, 2) 

potentials the right hand of which is defined as 

p = ~~Y&(P-@~, J’= -+VdiW 
J d 

We use the dimensionless quantities defined by [b] = 

c; [1.,z] = c/wpe; [t] = wpel; [?I] = noe. [q] = e, [m] = 
mg: [$,A] = &&/e; [E,B] = (47ru”e&eh)“~: [J] = enocr; 
[PO] = [$I = c’/w,,, where upe = (47rr1e~e~/me)~‘~ is the 

electron plasma frequency. & = mice is the rest energy of 

the electron, nee,mc, e are the initial density, rest mass and 

charge of the electrons respectively, 7 is the relativistic factor. 

The equations of motion, obtained as characteristic 

equations of Vlasov’s equation have the form: 

du, 1 q $J a(~&) 
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where ii = yZ, $ = -$i? = PO - ATAO, (PO is 

the dimensionless generalized particle momentum), y = 

[1+u,2 + (g/T)* + uy2. 
The boundary conditions for the potentials are 

T = 0 : &$/r?r = 0 aAL/& = .4, = i?Asj& = 0; 
r = 1’L : c#l = 4(i) 4, = it, = .40 = 0, 

0, O<z<A, -- 

$42) = 
(n - l)A,+ 
+%(z - (2n - I)A,), (2n - l)A,<z52nA: 

nAd> 2n~z~(2n + l)A, 

i=o: DA, 

1 

1 i)(rTL.) Drl, aA,5 -II 
z= ZL : 1 az -;~‘~=~=o 

dl,,, = 0, bJ,=,, = dr. 
where A4 = (4~ -@0)/K, A,, = z~/(2K + 1) are the po- 

tential difference accross the accelerating gap and the length 
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Figure 1: Distributions of the total charge density p(r, z) (a), scalar potential d(v, 2) (b), axial current density jl(~, z) (c). 

and the distribution functions f(V) (d) of electron (1) and ion (2) b earns versus the longitudinal (V,) and transverse (!I;.) 

velocities at t = 280,1 = 420 and 1 = 720. 
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of that, n = 1, _. . . I;. h’ is the total number of cusps. The 

initial conditions for the self-consistent fields are Ad = .+I2 = 

A, = As = 0 (here A is Laplassian). 

The boundary conditions for the distribution fu_nctions 

set the hollow beams injection at z = 0: f,(p’,R,t) = 
fS(rnLii, l?,t) = 6(ur)6(u2 - u,,)S(u,) at T,,jn<I.<).,,, 
and p, > 0, they are equal to zero at z = 2~. Here ymIIL 

and r.,,, are the minimum and maximum beams radii re- 
2 112 

spectively, uos = Ifs/(1 - V, ) VA is a beams velocity. 

At (v = 0, T = r~) set the reflection regime: f*(s, R’, t) = 

fs(-pT,pp,,ps, d,t). ZE[O,ZL]. At the initial time, the distri- 

bution functions are equal to zero. 

The external magnetic field is defined by the expression 

As = -Fell(kr)cos (kz) where II is the first order mod- 

ified Bessel function, & is the amplitude of magnetic field, 

and k = Ics/zr, 

The method and algorithm of the solution of presented 

equations are described in [5]. The above model was carried 

out as a 2 5.dimensional cylindrical computer code [4, 51 

III RESULTS AND DISCCSSION 
Let a hollow magnetized electron beam with velocity 

16 and a hollow high-current unmagnetized ion beam with 

velocity ‘& be injected along the z-axis into the external 

magnetic field. The beam current densities are equal to 

qenoeve = %%,K. 
In the calculations we assumed the mass ratio to be 

nf*/m, = 100, 171, = 20rn,~, the number of particles in the 

cell was I‘\‘~ = 64, Ni = 180. The ion beam velocity was 

supposed V, = 0.285. The minimum and maximum beams 

radii were rrnln = 30 and r n102 = 32.5.The length and ra- 

dius of the chamber were ZL = 157.5 and r~ = 157.5. The 

amplitude of the external field was Bo = 1.76 In all cases 

two cusps K were considered The number of points and the 

time step for solving Maxwell’s equations were (64x64) and 

Ar = 0.025 The time step for solving of the equation of 

the motion was equal to A1 = 0.05 

The potential difference and the electron beam velocity 

were changed as follows 

No of case 1 2 3 

A, 0.8 2.0 5.0 
r/, 0.85 0.85 0.8 

The results of the calculations are shown for case 1 in 

figure 1. Cases 2 and 3 are not displayed because of the 

limited scope of paper 

The distributions of p(r, z) (a), @(r, z) (b), j;(r, z) (c), 

presented in figure 1 show that the applied external electric 

field, which accelerates ions and retards electrons, does not 

disrupt the electron beam drift through the accelerating gaps 
From the functions j, (r, z) (fig.lc) it is clearly seen that not 

only the charge (fig.la,b) but also the current compensation 

of the ion beam occur. Figure Id shows the distribution func- 

tions f(l’) of the electron (1) and ion (2) beams versus the 

longitudinal (li) and transverse (vr) velocities at t = 280, 

t = 420, and t = 720 respectively It isseen that the ion beam 

generally retains monoenergetic shape, because its spread in 

V, and xi,. does not exceed 10%. The electron beam spread 

in the velocities is nearly 100% but this does not prevent 

the charge compensation of the ion beam by electrons 

In variants 2 and 3 the electron beams energy &,a was 

not sufficient to overcome the potential difference in the ac- 

celerating gaps They have demonstrated that the electrons 

localize mainly in the drift region of the channel in the case 2 

In third case the electrons have retarded predominently by the 

electric field of the first accelerating gap. Only a slight part 

of electrons pass to the second gap following the ion beams 

therefore the ion beam is retarded and the substantial radial 

spread occures as the space charge compensation of beam is 

not quite. The distribution functions has also shown the sig- 

nificant spread both the longitudinal and transverse velocities 

with the displacement of the distribution function maximum 

into the positive direction of the transverse velocity about 

x 0.1. 
The above presented results of the computer simulation 

are correspond to the real model of a high-current linac [3] 

The length of the accelerating gap is L-5 cm, the radius 

of the chamber is Rx10 cm, the characteristic magnetic 

field value is &11,-7.5 kG, the Larmor radius of electrons is 

r~~z0.045 cm (~L~<<L), the Larmor radius of ions is r~,z21). 

cm (?,L<>>L), the electron beam density not = 8.10’” cm-’ 

The maximum of the electric potential 4 (fig lb) in the drift 

gap obtained in the computer simulation can be easily rec- 

tified by the cold electrons injection to that for the space 

charge compensation. In the real linac this is also no difficult 

as the external electric field is not in the drift gap which is 

sufficiently extended in comparison with the accelerating gap 

Thus the high-current beams can be accelerated in the 

linac with the substantial space-charge and current compen- 

sations without disturbing the stability in deciding on the op- 

timal parameters 
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