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Abstwct JW. t) = c c,(W,W (4) 
Wall losses can cause a coupling between eigenmodes in j 

a cavity. The magnitude of the effect can be determined by 
means of eigemnode expansion. The influence on rise time of 

As shown in (5) the eigenmodes are normalized to unity. 

forced oscillations is calculated. Results for a brick resonator 
and a six-cell iris structure are presented. { 1; ]f[ ;;:;; }dv=a, (5) 

I. INTRODUCTION 
The operation of superconducting and conventional Wall losses are taken into account by assuming the following 

linear colliders under multibunch conditions requires the boundary condition for the parallel electric field on the 

recovery of the accelerating field and damping of wake fields surface, % being the surface impedance [3]. 

being completed before the arrival of the next bunch in the 
train. In either case the study of time behaviour of the 

E,,, = (I + i)R.H,, x n (6) 

accelerating resp. wakefields is essential. For example. for 
TESLA [I] a train of 800 bunches, following each other in 

We multiply equatious ( I) with E,‘, H,’ resp., use (3), (4), and 
(5), integrate both equations over the cavity volume and 

1~ distance, is foreseen. For TESLA accelerator sections apply Gauss’ integral identity. The appearing integral of the 
there have been experiments and calculations based on 
lumped circuit theory showing good agreement between 

function E x H,’ can be evaluated (using (6)) to a sum of b,(t) 
with coefficients depending only on the magnetic eigentields. 

measurement and calculations [2]. 
In order to investigate the time behaviour of generator or 

These interaction terms are denoted by A,, 

beam driven cavities we decided to use a more general 
approach. 

If (Exq nds=(l+i)R,xbk(t) f H;,HI,ds 
av k 3V 

II. GENERAL THEORY =: (1 +i)R, c A,I; bk(t) (7) 
A. Basic Equations k 

We consider a driven cavity and want to express the Now we are able to set up a first order system of linear 
solutions of the time dependent Maxwell equations (1) in differential equations describing the behaviour of the 
terms of cavity eigenmodes. coefficients for the evaluation of the fields. The dimension is 

twice the number of modes under consideration. 
VXH=E&E+J , VxE=-p&H 0) 

The eigenmodes satisfy the following set of equations [3]: qo -iwjb,(t) = -&Cj (t) 

V X H, = iojeoEj , V X Ej = -iwjpoHj (2) 
L,(t) -iwia,(t)+( I + i)Ra f(AILbk(t)) = 0 

0) 

The solutions of the time dependent equations (I) may be This is equivalent to a second order system: 
expanded as 

E(r, 0 = c a,(t)Ej(r) , Wr, t) = c bj(t)H,(r) 13) 
&j(t) +(I +i)R, 5 (A,kbk(t)) +wFb,(t)=-zcj(t) (9) 

j j 
One can observe the driven harmonic oscillator characteristic 

if the driving term can be expressed in the same way. which is modified by the mode interaction in the first order 
time derivative terms. 

‘Work supported by HMm under contract no. 05SFM111 

13. Treatment oj‘the ICxcl7ar7ge Terms A,k 

The A,;Rd are proportional to the wall losses in the mode 
j. The single-mode Q is given by: 
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Q=-% 
Aii R, (10) 

The Air describe power exchange between modes. From (7) it 
is apparent that: 

A$ = AS (11) 

Further it can be shown with aid of the sentence of 
Bunjakowski-Schwarz [4] that there is an upper limit for the 
value of the qL. 

IAjkI 2 JK (12) 

For some simple geometries like brick or pillbox 
cavities there are analytical solutions for the qL, In general a 
numerical determination of fields has to be done, e.g. use of 
MAFIA [5] or similar codes. 

III. NUMERICAL AND ANALYTICAL 
EXAMPLE 

Starting with (8) one first seeks the solution of the 
homogenous system. For simplicity, in the following we 
restrict ourselves to two modes. This is no limitation of the 
procedure. 

i, 

1~1: 

0 iw, 0 0 81 

b, = iw, -(I +i)R.AII 0 -(l+i)R.A12 b, 

i2 0 0 0 io, 

bz 0 
II 1 

(13) 
82 

-(I +i)R,A;, io, -(I+i)R.A12 bt 

The general solution of the homogenous system can be 
written as: 

f(t)=u,V,e”I’+ . +uqVqeAat (14) 

where f = (a,,b,,q,b,), 4 and V, are the eigenvalues and 
eigenvectors of the system matrix, and u, are arbitrary 
constants. To solve the inhomogenous system variation of 
constants u, is used. With the assumption of the same 
harmonic time dependence of both c,, c, (they may differ in 
phase and amplitude) we get for the inhomogenous part of 
@I: 

$1 :i: j_tceiaots(t)=[ f !eimnts(t) (15) 

where s(t) is an arbitrary function controlling the complex 
amplitude of the excitation. The solution is, e.g. u,(t): 

u,(t)= det (cVZ,V~,V~) ' ei"ors(9dT 
I det WI,VZ,V~,V~) o ehlr 

(16) 

Inserting into (14) gives the result. 
The figures l.-4. show the envelope of the values ]a,l, I%,1 

of the forced exp(io,t)-oscillations. The eigenvectors and 
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Figure I. Brick resonator driven slightly below reso- 
nance of both degenerated modes (TM,,,, TELL,). In the 
parameter block the generator (OMEO), the two angular 
eigenfrequencies (OMEl, OME2), direct coupling 
constants according to (15) (KAPl, KAP2), the A,, and 
the wall impedance are printed. 
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Figure 2. Brick resonator driven very close to resonance. 
Is,1 reaches about 10% of ]a,[. 
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Figure 3. Brick resonator driven above resonance. 
Stabilization of second mode takes twice the time of the 
first. 
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Figure 4. Six-cell iris structure. First mode is rd6, second 
mode is x/3. Excitation at eigenfrequency of second 
mode. The relatively far distance to o, causes a fast 
oscillation of la,/. I%,1 reaches about 0.5% of la& 

eigenvalues as well as the u,(t) were calculated numerically. 
The function s(t) has been chosen 

s(5) = i [ 
0.5 1 - cos(+r) 1 TlT, 

St (17) 

I ’ s>Td 

that analytical time integration is possible. 
For the brick resonator ideal degeneration of modes is 

possible. Therefore we investigated the interaction between 
the TM,,, and the TE,,, mode. The A,k werde determined 
analytically. 

As an example of a multicell structure we chose a 
six-cell iris cavity. The TM,,,&6 and the neighbouring n/3 
mode were calculated by means of MAFIA, then the 
magnetic surface fields had to be extracted from the result 
tile in order to compute the A+. 

IV. CONCLUSIONS 
There is a coupling between modes due to wall losses. 

The effect depends on the distance of Frequencies of the 
involved modes, the value of wall impedance, and the 
geometrically determined interaction terms Ak. The coupling 
strength is limited according to (12). In most cases there is no 
need to take care of the effect. But it can be of some 
importance for degenerated modes or multicell accelerator 
structures with low coupling between cells, equivalent to 
narrow passbands. A similar coupling mechanism is to be 
expected for HOM-damped structures. 
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