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Abstract 

We review some optical measurements and correction 
strategies adopted for the new lattice with 90’ phase ad- 
vance used in LEP during 1992. In particular, we compare 
three different techniques used to measure beta-beating: 
a multi-turn orbit measurement in presence of betatron 
excitation, a method based on the variation of chromatic- 
ity due to opposite trims in the strength of two sextupole 
families and an orbit measurement with two orthogonal 
kicks. The average vertical beating measured by these 
three methods (up to 37%, depending on the optical config- 
uration) shows a substantial agreement among them. We 
also discuss a resonant method of correction for residual 
dispersion by special orbit bumps. The amplification fac- 
tors for such bumps range from 200 to more than 700, 
r.e., a I mm orbit bump can give rise to more than 70 cm 
peak dispersion and these bumps have been routinely used 
to control beam size and optimize machine performance 
without any appreciable effect on the closed orbit. 

I. MEASUREMENTS OF BETA-BEATING 

During 1992, the behaviour of the beta-functions in LEP 
did not correspond to the theoretical predictions. In par- 
ticular, for an optical configuration supposed to yield a 
vertical beta value of 5 cm at the IP’s, the actual measured 
beta value was around 7 cm. This effect was corrected by 
applying an empirical trim AK/K = 7.24 x lo-* to the 
strength of the low-beta quadrupoles (QSO’s). A more gen- 
eral study of the associated beta-beating was then started 
to understand the origin of such discrepancies and their 
consequences on the available aperture of the machine. 
The three different techniques used to measure the beating 
of the beta-functions [l] are described below. 

A. Multi-turn orbit measurement 

This method consists in the analysis of the turn by turn 
readings of the monitors (up to 1024 turns) in presence 
of betatron excitation. The data is then Fourier analyzed 
at the excitation frequency (usually close to the betatron 
frequency) yielding the amplitude and phase of the driven 
betatron oscillations around the machine [Z]. 

B. Sextupole method 

The strength of one of the two defocussing sextupole 
families (SDl) is increased by some amount, whereas the 
strength of the second family (SD2) is decreased by the 
same amount. This should leave the vertical chromaticity 

Q’ of the machine unchanged if the &values are the same 
in all the SD sextupoles, since the phase advance between 
two successive SD2 is x (this still holds in case of beating 
of the dispersion). The variation of chromaticity is related 
to the difference between the vertical p’s at the SD1 and 
SD2 sextupoles by [3]: 

1 
AQ’= ~&sD~sD~~$D,(&~ -Pm,). 

C. Orthogonal kicks 

Closed orbit distortions are created by subsequently ex- 
citing two corrector magnets with a phase advance of r/2 
between them. In an ideal machine without beating, squar- 
ing the readings of the two orbits and adding them elimi- 
nates the phase-dependent term in the orbit response, and 
directly yields the values of the P-function. In presence of 
beating, however, the values pr and /3s at the two correc- 
tors may be different and the phase advance between them 
may deviate from the nominal value x/2 by some amount 
E. In general, the @-function is given by 

P(s) = MY: + b:(s) + CYI(S)YZ(S), 

where yr(s) and y?(s) denote the measured (difference) 
orbits corresponding to the excitation of each corrector 
and the three coefficients a, b and c have the following 
theoretical values: 

a = F/PI, b = F/h> c = -2F sin(e)/a. 

Here F = [2 sin(=Q)/cos(c)Ay’]s and Ay’ is the common 
(angular) strength of the two correctors. 

The coefficients a, band c have been estimated using two 
independent methods, both giving the correct result when 
applied to orbits simulated with MAD. The first method 
makes use of the (vertical) orbit values yl(sr), ys(ss) at 
the PU’s closest to the correctors in order to obtain pr 
and 0s. It can be shown that the ‘cross terms’ yr(ss) and 
ys(sr) should have the same value yrs given by 

~12 = ;Ay’m $cos(c) 1 
Therefore the equality of the cross terms can be used as 
a self-consistency test and E can be estimated from their 
common value yrs. This method is independent of the 
nominal p-function, but requires the measured tune Q. 

A second method to estimate the coefficients a, b and c 
consists in a five-parameter fit of the nominal p-function 

PN = OY: + by: + CYlY? - PN [A 42d~,v) + B sin(%$N)] , 
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p; = 21 cm p*; = 7 Cl,, 
v 

II p; = 5 
octant multi-turn 1 kicks mull ii-turn -. multi-turn 

1 19 1 17 41 16 
14 15 42 18 
9 6 33 6 
11 5 34 7 
10 4 34 12 
7 9 32 9 
16 4 42 24 

kicks 
19 
24 
12 
11 
9 
14 
10 

(A;,@ 

13 

/ 

6 40 36 18 14 
12 8 37 1 33 14 / 14 

sextupoles 9 37 13 11 
Table 1: Vertical beta-beating (in per cent) for the detuned optics, for the nominal squeezed optics and for the squeezed 
ootics with trimmed QSO’s: results for multi-turn analysis and orthogonal kicks are octant by octant, while only the 
average beating is given for the sextupole method. 

where the harmonic terms in square bracket take into ac- 
count the beating at twice the nominal betatron phase 4~. 
Applying this method to simulated orbits, we have found 
that the correlation of the fit becomes poor when the beta- 
beating is produced by a few localized sources (e.g. QSO’s), 
but that a good correlation can be recovered by introduc- 
ing a different harmonic amplitude for each arc: therefore 
we effectively perform a fit with 3 plus 8 parameters. This 
method is more stable agaiust PU noise, since it makes 
use of the information at all the PU’s, but the resulting 
amplitude of beta-beating in each arc depends somewhat 
on the criterion adopted for the rejection of bad PU’s. 

We have used the first method to have a rough estimate 
of a, b and c: then we have discarded monitors where Ap/p 
was larger then 3 times its t.m.s. value and finally we have 
used the second method, based on the fit, to arrive at our 
final result. Typical values for a, b and c were 1.5, 1 and 
0.25, respectively, thus showing a significant deviation from 
the simple rule of summing the squares of the two orbits. 

D. Comparison of the results 
In Table 1, we report the vertical beta-beating measured 

by the multi-turn and by the orthogonal kick method in 
each LEP octant for three different optics, together with 
the corresponding average beating measured by the sex- 
tupole method. In Table 2, which refers to a perturbed 
squeezed optics, the results of the sextupole method are 
reported quadrant by quadrant. The average vertical beta- 
beating measured by OUT three independent methods shows 
a substantial agreement among them, with the results of 
the sextupole method typically lying below those of the 
multi-turn and above those of the orthogonal kicks. The 
comparison of the beating amplitudes octant by octant 
suggests a larger spread in the results of the three meth- 
ods, possibly associated with the criterion adopted for bad 
PU rejection. Finally, all methods confirm a large vertical 
beating for the nominal machine with & = 7 cm and a 
significant reduction of this beating as a consequence of 

the trim applied to the QSO magnets in order to bring & 
down to 5 cm. 

During the last LEP shutdown, the longitudinal posi- 
tion of the QSO and QSl magnets was found to be wrong 
by significant amounts (up to 9 mm). According to recent 
simulations 141. these ouadrupole shifts are largely suffi- . ,. 
cient to explain the observed beta-beating. 

Octant 
1 
2 
3 
4 
5 
6 
7 

(ah 

multi-turn 
22 
22 
20 
20 
21 
25 
33 

sextupoles 

22 

29 
24 

kicks 
16 
18 
10 
12 
14 
20 
18 
23 

15 

23 

22 

Table 2: Vertical beta-beating (in per cent) for the per- 
turbed optics with p; = 5 cm and KQSO.L2= -0.0004: 
multi-turn analysis, orthogonal kicks and results of the sex- 
tupole method (in each quadrant). 

II. RESONANT DISPERSION BUMPS 

During LEP start-up in 1992, large r.m.s. values of resid- 
ual vertical dispersion (up to 60 cm) have been observed, 
both with the 94/100 optics and with the 91/97 optics. It 
was later shown by simulation [5] that large fluctuations 
of D, can be generated when a reduced number of orbit 
correctors (typically 16) is used in each iteration. As a 
consequence, the initial strategy for closed orbit correction 
was modified (using 64 correctors per iteration) and the 
residual dispersion was much reduced. Meanwhile we de- 
veloped a resonant method of correction [6] that turned 
out to be very useful during physics runs. 

Since D, is mainly driven by the vertical orbit harmon- 
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its closest to the vertical tune, we looked for special orbit 
bumps having a Fourier spectrum dominated by the line at 
the integer betatron tune, i.e., orbit bumps as close as pos- 
sible to a pure betatron oscillation. The dispersion created 
by such a ‘resonant’ excitation could then be used to can- 

cel the corresponding betatron component of the measured 
residual dispersion, by mole than an order of magnitude, 
without any appreciable deterioration of the closed orbit 
(and of the coupling compensation). In order to apply this 
resonant excitation with the right phase, one has to deter- 
mine the correct amplitude for two independent bumps in 
quadrature. 

Let us consider a series of orbit bumps with the same 
amplitude, each of them extending over a large fraction 
of a machine arc. With the 90’ optics, each bump can 
be excited by two correctors, close to the beginning and 
to the end of the corresponding octant. For any given op- 
tics, and thus for given betatron phase advances across the 
straight sections, it is always possible to choose the rela- 
tive phases of the arc bumps such that their contributions 
to dispersion add up almost coherently. In fact there are 
two independent choices giving rise to ‘resonant families’ 
of arc bumps in quadrature: the corresponding D, is either 
symmetric or antisymmetric around the IP’s. 

To estimate the amplification factor A, defiued as the ra- 
tio between normalized dispersion (outside the bump) and 
normalized bump amplitude, we write the vertical closed 
orbit y,,(s) and the associated dispersion DY(s) for a sin- 
gle orbit bump with normalized amplitude Y, starting at 
the beginning 3, of arc i: 

~~~(3) = Yv@JTsill[p(s) - hl, 

YdPN h(s) = -YCO(S)- 2sil,(TQ) *ds’ LO (K - K’D,)],, f(s, 5’). 
J ,‘7lL,, 

Here f(s,s’) = cos[aQ - jp(s) i p(s’)l]sin[p(s’) - p,] = 
= {sin[rQ + 2p(s’) - /J(S) - p,] - sin[xQ - p(s) + ~,]}/2 
(for g(s) > ~(5’)). The first term in curly brackets os- 
cillates at twice the betatron frequency and thus changes 
sign at each cell (if the phase advance is 900), while the 
second term is independent of the integration variable s’. 
Therefore for a two-family sextupole arrangement, the con- 
tribution of the first term to the integral vanishes and ne- 
glecting the first term in the expression of D,, we get 

DC,(S) Y sill[KQ - 4s) + kl m= 4sin(7rQ) I 
ds~ p cK _ p~,)j,, . 
*amp 

The last integral equals 4~i’J~~,lQ&~~ , where Nc,n is the 
(even) number of regular cells covered by the bump and Q',d the chromaticity of a single cell. Thus the amplifica- 
tion factor A for a vertical bump extending over a single 
arc is A = TN,,,~Q’,,l,/sin(KQ). 

If the number of cells covered by orbit bumps in each 
octant is the same, the global amplification factor is Atot = 
8C A, where the coherence factor C < 1 is given by 

C = ; 
J 

8 + 5p,4~z - ~~1. 
$23 

Here pi = z!zl denotes the sign of the orbit bump starting 
at betatron phase gi in octant i. We choose the signs p; 
and the starting cells (i.e., the phases r;) such that the 
coherence factor is as large as possible. For the 90’ injec- 
tion optics and for an arc bump extending over 26 cells 
in each octant, OUT formula gives a global amplification 
factor Atot N 282, while using MAD, we find global ample- 
fication factors of 280 and 276, respectively, for symmetric 
and antisymmetric resonant bumps. 

In the case of a four-family sextupole arrangement, as 
in the squeezed optics, the term oscillating at twice the 
betatron frequency also contributes to vertical dispersion 

I 
ds’ p (K - K’D,)],, sin[?rQ + 2p(s’) - p(s) - p,] = 

bun&p 

N 
--F C~;‘P(s’)AK’(s’)DZ(s’)sin[TQ+2/i(s’)-~(s)-~,]~ J 
where AK’ is the difference in sextupole strength between 
two SF or two SD families. This difference increases for de- 
creasing values of p’ and, if the bump phase pi is shifted by 
an odd number of cells (i.e., by a multiple of 7r/2) the sign 
of AK’ is reversed. Since the main difference in sextupole 
strength OCCUIS for the two SD families (corresponding to 
an effective three-family sextnpole arrangement) and since 
the vertical phase advance from a vertical corrector to the 
defocussing sextupole in the same cell is almost r/2, the 
contribution to vertical dispersion is proportional to the 

same trigonometric factor as the previous contribution due 

to Q:,u and the amplification factor becomes 

A-7 $=;‘& TQ:,,, * f (PAK’~Dz),, 

For the 5 cm squeezed optics, the cell chromaticity is 

&:.,I = 0.45 and the contribution of the SD sextupoies 
is (pAK’LDz)s~ _ N 6.5. Therefore the symmetric and an- 
tisymmetric bumps now have rather different global ample- 
fication factors, approximately given by Al,t cl 470 ic 270. 
These estimated factors are again very close to those com- 
puted by MAD, namely 203 and 735. 
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