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Abstract 

In future hadron colliders such as the LHC very high 
fields are needed to reach the design energy. Only super- 
conducting magnets can produce such high fields and only 
at the cost of strong multipolar ertozs up to high order. 
This leads to a large non-linear shift of the tunes (detun- 
ing) both in amplitude and momentum, which may forbid 
a safe operation of the accelerator. The best solution to 
decrease these effects is to introduce a quasi-local correc- 
tion via placing a set of non-linear elements in each cell 
near the source of the errors. A sequence of programs 
were used to perform this kind of correction. SIXTRACK 
was used to produce the high order transfer map in five 
variables using the DA-package of Berz. The tune-shift 
functions are derived with the Lielib package of E. Forest. 
Then, based on the approach proposed by A. Bazzani and 
G. Turchetti and first applied by E. Todesco, we developed 
a correction procedure to minimize these detuning func- 
tions up to fifth order (decapole contribution) considering 
four-dimensional tune-shift with the momentum deviation 
as a parameter. For different machine versions we com- 
puted correction schemes and compared the results with 
tracking simulations. In all cases a considerable improve- 
ment of the detuning was established. 

I. INTRODUCTION 

In the design of magnets for the new accelerators one can 
not completely avoid high order multipole ectom which 
limit the dynamic aperture of these new machines. The 
strategy to tackle this problem is twofold: one has to set 
reasonable specifications for the magnet etrozs and propose 
a proper correction scheme for the residual non-linear con- 
tent of the magnets. In both cases a profound knowledge 
of the sources for the aperture limiting effects is needed. 
A good indicator of the nonlinearity of the machine is the 
tune-shift as a function of amplitude and momentum. The 
correction schemes will deal with minimizing the detuning. 
The straightforward approach is to carry out the optimiza- 
tion by tracking methods [l]. In that process it is not ob- 
vious how the different multipole components enter into 
the detuning functions especially when there are interfer- 

ing terms. 
There aze different analytical methods to derive the tune- 
shift as a function of multipole ezzors and phase space co- 
ordinates. One of the possible approaches is using normal 
forms [2, 31. This choice has the convenient advantage that 
there are ready-to-use software packages [4, 51 to attack 
the problem. 

II. CORRECTION METHOD 

The correction procedure is carried out using an order-by- 
order approach. We first determine the values of the sex- 
tupolar correctors needed to optimize the first order tune- 
shift. Then the computation of the decapoles is carried 
out working on the second order tune-shift. The approach 
used can deal with both amplitude-dependent contribu- 
tion in the tune-shift and momentum-dependent effects 
(at the present the correction of the mixed terms is not 
considered but it is possible as well). In the former case 
there are i + 2 coefficients at order i, while in the later one 
there aze always only two coefficients which we denote by 
oil,,,, a,,;(C) where I& is the integrated gradient of 
order I. Given a sufficient number of free correctors it is 
in principle possible to set to zero the tune-shift at order 
i. If this can not be fulfilled we can always define a norm 
in the tune-shift space which we can try to minimize. The 
choice commonly used [3, 6, 71 is: 

1 

+ @‘+’ ,,,tp.=R -1 [6~,,i(p,,Pa;~~)12dpldPz (1) 
for the amplitude-dependent case, where 6v,,,, 6vV,, are 
the horizontal and vertical tune-shift functions at order i 
respectively. For the momentum-dependent effect we use: 

xi,; = [%,,(Kl)12 + bV,.(X1)12. (2) 

Both ~,,o,~o,, are low order polynomial functions of the 
integrated gradients lit only. Therefore the correction 
strategy does not depend on a particular value of pt, pz, 6, 
but represents a global minimization over the whole phase 
space. 
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The computation of the functions xi,o, xe,, is carried out 
using SIXTRACK [S] and the Lielib package of E. Forest 
[5]. As a first step the one turn transfer map is produced 
including 6 and the corrector strength as additional param- 
eters. The result is a polynomial map in N,, +5 variables, 
where N,, is the number of free coriectors. Then the 
tune-shift is computed using Lie-algebraic techniques, Fi- 
nally we have added a special routine to minimize xi,o, xo,+. 

III. LATTICE MODEL 

We consider two realistic models of the LHC including the 
differences between odd and even octants as well as in- 
sertions each having a different purpose. The differences 
between the models consist mainly in the celI layout. In 
the first case (LHC version 1) there are eight dipoles per 
cell and two central correctors consisting of sextupole, oc- 
tupole and decapole magnets. Near the cell quadrupoles 
there ate additional correctors. In this case the sextupoles 
are used to set to zero the linear chromaticity. 
In the second case (LHC versiona) there are only six 
longer dipoles per cell and each of them has a corrector 
at both ends: a sextupole and a decapole. Again addi- 
tional sextupoles are placed near the focusing and defo- 
cusing quadrupoles to correct the linear chromaticity. 
As far as the ezrom are concerned only the contributions 
due to the dipoles have been taken into account. The val- 
ues of the systematic multipole errors forseen for the LHC 
dipoles and used in OUT studies are listed in Table 1. 

Table 1 
Normal dipole field erzozs in units of IO-* at & = 1Omm 

Order Systematic Systematic 
at injection at injection 

n LHC Version 1 LHC Version 2 

/ 0 1 - 5.00 

as a function of the M cell correctors 

1 
Kz,r = QF +PI,FKz,I + . .PM,FKz,M 

K?,D = QD +&,DKz,I +...PM,DK~,M 
(3) 

Therefore the number of free correctors available to mini- 
mize xi,o, xo,i is reduced. For the LHC version 1 there are 
three free correctors: 

Ka,c, &.c, &,D (4) 

The decapoles near the cell quadrupoles have been set 
equal &,D = K4,p so that the mid-cell symmetry is not 
broken. In this case we can fix the value of Kl,c by min- 
imizing the first order tune-shift (amplitude 01 momen- 
tum). The decapoles can then be used either to correct 
exactly the second order momentum-dependent tune-shift 
oz to optimize xz,e. The results are showed in Fig. 1: solid 
lines represent the detuning computed with normal forms, 
while dashed lines are obtained by direct tracking. The 

yz’o oo 10 15 
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The double sign is a feature introduced by the two-in-one c.“’ 
geometry of the magnets and it produces a change in the 
sign of the eczoz from odd to even octants. Therefore in 
the case of the octupole components there is a sort of self- ‘J’ 
compensation of the ezroz along the whole ring. Because 
of this symmetry we decided to introduce in OUT models D308 
only the sextupole and decapole components of the field 
errors. 
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Figure 1: Detuning curves for LHC Version 1 

IV. CORRECTION scmms FOR 

DIPOLE ERRORS 

Each correction scheme has to take care of linear chro- 
maticity. This imposes a linear relation between the sex- tuneshift of the machine in which only the linear chro- 
tupoles and it fixes the values of the chromatic correctors maticity is corrected and the results of a tracking-based 
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correction [l] is shown. Due to the better control on the 
higher order terms the normal form procedure allows to 
correct the machine so that a good agreement with the 3 
tracking can be found up to the dynamic aperture. o 0.201 

The scheme used for the second lattice, LHC version 2, is 2 
completely different. Only two free correctors are used: 2 o,282 

&,c, &,c (5) 
0.28 

in order to reduce the number of independent power sup 
plies needed. In this situation the only choice is to min- 
imize one of the functions xi,o,xo,; using the two correc- ‘J” 
tots. Due to the quasi-locality ofthe optimization scheme, 
correcting one of the two tune-shift functions (amplitude o,276 
or momentum) implies a good correction of the other one 
(this holds a!so for LHC version 1). However for the latest 5 Am&de mm 
version there are cases in which one correction type disturb 
the other. We found that dropping the concept of having g -.~.- 

a mid-cell corrector has the price that the effectiveness < o,),l 0 Amplitude corr. - Theory 1 
of the sextupole correction is reduced (compare the coxe- .z 
soondine curves in Figs. 1,2). 3 

I 

The sitiation concerning the correction of the second or- 
der tune-shift with the decapoles is different. The COI- 
rection can be performed almost perfectly. The reason for 
this difference is the fact that the sextupole strengths enter 
quadratically in the first order tune-shift, while the second 
order detuning functions depend linearly on the decapoles. 
It is interesting to stress that the results of the second OI- 
der optimization depend on a good correction of the first 
order detuning because this reduces the interfering terms 

o 312 

O.” 

o.308 

0.506 
between sextupoles and decapoles: without this precondi- 
tion it would be veIy difficult to achieve an optimal solution 
using decapoles. The results are shown in Fig. 2 where we 
compare two different sets of correctors obtained by min- 
imizing x1,0 and xz,o or by using x0,1 and ,~c,z. Besides 
the problems with the sextupole stated above also in this 
case a satisfactory correction has been achieved. 

V. CONCLUSIONS 

We have shown the effectiveness of the normal form ap- 
proach to correct the tune-shift due to field errors. Both 
the amplitude-dependent and the momentum-dependent 
tune-shift can be corrected applying this technique. How- 
ever, we would like to stress that these correction results 
have always to be tested against tracking results. This is 
necessary to avoid solutions which are dynamically not ac- 
ceptable. 
Finally a user-friendly option to perform these corrections 
in SIXTRACK is in preparation. 
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Figure 2: Detuning curves for LHC Version 2 
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