
Automatic Differentiation of Limit Functions 

Leo Michelotti 
Fermilab’, P.O.Box 500, Batavia, IL 60510 

Abstract 

Automatic differentiation can be used to evaluate the 
derivatives of and set up Taylor series for implicitly de- 
fined functions and maps. We provide several examples 
of how this works, within the context of the MXYZPTLK 
class library, and discuss its extension to inverse functions. 

I. INTRODUCTION. 

The techniques of automatic differentiation [2] and differ- 
ential algebra [l, 3, 91 are rapidly becoming a standard 
part of accelerator physicists’ arsenals. That automatic 
differentiation can be used to calculate the derivatives 
of recursively or iteratively’ defined functions is not as 
well appreciated as it should be. Applying recursive algo- 
rithms directly to DA variables’ provides an easy method 
for obtaining derivatives of such functions. In the fol- 
lowing sections we shall (a) sketch the essential argument 
needed to prove this assertion, (b) discuss two examples 
written using the C++ classes in MXYZPTLK [5, 61, and 
(c) provide C++ code fragments for a general program. 
This paper builds on work done previously [7] but re- 
mains necessarily short. Applications of the techniques 
described are too numerous to mention and so obvious 
that there is no need to do so. 

II. HEURISTICS FOR A PROOF 

formal, and how it works is not obvious to naive intuition- 
ists. It is hoped that the following heuristic argument will 
be easier to understand while retaining essential points of 
the proof. 

Let f : R -+ R possess a fixed point, I*. The sequence 
z,+i = f(z,,), started “close enough” to z*, converges to 
I* provided that ] f’(z’) ] < 1. Now consider the recur- 
sion, 

+,+1(m) = e”(m), m) , (1) 

and assume that it converges to a fixed point, z*(m), for 
a given m. This requires that 

z*(m) = F(+*(m),m) and ] &F(z*(m), m) 1 < 1. (2) 

Differentiating both Eqs.(l) and (2), we get the following 
result. 

&(m)(l - &F(r’(m), m)) = &!F(z’(m), m) 

4+1 = “;dlF(zn,m) + i32F(+,,m) I 

where primes denote differentiation with respect to m, 
and & means differentiation with respect to the kth argu- 
ment. The defect between z$+i and z*‘(m) can therefore 
be estimated as follows. 

x;+l -x”(n) = (x:, - r*‘(m))alF(x,,m) 

- [ z*‘(m)(l - &F(Gu m)) - a,F(%, m)] 

x (z:,-x*‘(m))a1F(x’(m),m) 

- [ &(m)(l - &F(z’(m), m)) - &F(f’(rn), m)] 

= (z’, -z*‘(m))a1F(2*(7n),m) 

As long as Eq.(2) is satisfied, i.e., as long as the original 
Following [7], a mathematically correct proof that recur- sequence converges to a fired point, the defect decreases 
sions can be extended to DA variables was published by andlim,,, zk = z*‘(m). Higher derivatives work as well. 
Gilbert [4] for single derivatives; its extension to higher The important thing is to recognize that simultaneously, 
derivatives is implied. The proof’s correctness makes it 

z’[~l(m)(l - &F(z’(m), m)) 
*Operated by the Universities Research Association, Inc. under 

contract with the U.S. Department of Energy. 
= Nx 

•[~-il(,),t.I~-21 (m), , z’(m),m) , and 
‘I confess to being confused about the distinction between “re- 

cursive” and “iterative.” 
xFil = z~b,F(x,, m) + iqxp1, xp,. , X”, m) 

‘A DA variable carries information about derivatives of functions 
as well the value of the functions. It is a computer implementation The demonstration of a convergent sequence then goes 
of a “jet” structure [S]. through exactly as with the first derivative. The only 

O-7803-1203-1/93$03.00 0 1993 IEEE 
495 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



con&lion that enters into play is Eq.(2), which is nothing 
more than the original requirement of convergence. These 
arguments still go through for a dimension greater than 
one, but the condition Eq.(2) becomes a statement about 
the spectral radius of the Jacobian, ~(~*(m),rn). 

III. IMPLICIT FUNCTIONS 

Consider the function z(m) defined implicitly by the equa- 
tion 

z(m)=COS(m’+(m)) (3) 

Simple recursion can be used to construct z(m) for m 
in the approximate range, m E (-1.2,1.2), determined by 
the condition Imsin( m z(m) )I < 1. A fragment of source 
code that uses the MXYZPTLK DA object (class) to im- 
plement this is shown below. 

coorda ( 0.5 ); 
DA x; 
x = cos( . ); 
for( i = 0; i < 15; i++ 1 x = co8( 1 * x ); 

This example used a coord variable for m, set to evaluate 
derivatives of z(m) at m = 0.5. coords are the atomic DA 
variables used to start calculations, basically the imple 
mentation of a projector. The behavior of the weighted 
derivatives - which would be the coefficients in a power 
series representation of r(m) - is shown in Figure 1; the 
first five are plotted versus loop index. Convergence is 
seen to be rapid, although, as suggested by the proof, a 
derivative does not begin to converge until the ones at 
lower order have already done so. 

IV. INVERSE FACTIONS 

One of the most frequent application of recursion is to 
compute the inverse of a given function. For example, ap- 
plying Newton’s method to the equation tan(r(m)) = m 
provides the recursion 

z,+~ = I, - cos I, (sin I, - m cos zn) , 

which converges to the function z(m) = arctanm3 The 
recursion can be applied directly to DA variables. Us- 
ing MXYZPTLK, the following short, simple C++ pro- 
gram follows the recursion explicitly through six steps and 
prints out the value and derivatives of z for a given value 
ofm. 

#include “mxyzptlk. rsc” 
main( int argc, char*+ argv ) { 

const int dim = 1; 
const int maxbight - 5; 

DASetupC dim. maxweight, dim ); 

double a - atof ( argvCl1 ) ; 

s As 811 acceptable seed, we could set zo(m) = m when InI 5 1.4 
and zo(m) = 1.4 when Irn) > 1.4. 

coord n ( a 1; 
DA x. s, c; 
int i, j. dC11; 
x = .; 
for( i = 0; i < 6; i++ )C 
* = sin( x ); 
c = cos( x ); 
x = x - c*( a - m*c ); 
printf ( “X-7.41f I’, x.standardPartO ); 

for( j = 1; j < 6; j++ ) { 
dCO1 = j; 
printf( “X-7.41f ‘I, x.derivative(d) 1; 

1 
printf ( “\n” ) ; 

1 
1 

When compiled and run with a command line argument 
of 1.2 it produced the output lines: 

1.0198 1.0581 1.7697 4.7170 -1.6753 -30.666 
0.9027 0.6776 1.9990 19.1460 119.009 531.937 
0.8769 0.4280 -0.0384 7.3912 124.051 2092.93 
0.8761 0.4099 -0.4015 0.5231 2.2807 101.790 
0.8761 0.4098 -0.4031 0.4571 -0.3575 -0.9372 
0.8761 0.4098 -0.4031 0.4571 -0.3575 -0.8414 

Notice the repetition of the earlier pattern: derivatives 
settle down to their limiting value in sequence. In par- 
ticular, the highest order derivatives can undergo unset- 
tlingly large excursions before convergence kicks in. How- 
ever, this is not a danger, as evaluation of higher order 
derivatives could be suppressed, if needed, until the lower 
order ones have converged. 

The wonderful thing is that we could start the recursion 
using any DA variable for m, not just atomic projectors. 
We could, for example, use a code fragment like the fol- 
lowing 

coord y ( ay ), z ( az ); 
DA m, x, s, c; 
. - sqrt ( y*y + z*z 1; 
I = .; 
shile( x. &Changing0 ){ 

s = sin( x ); 
c = cos( x ); 
x = x - c*( s - m*c 1: 

1 

to find derivatives of arctan Jw evaluated at 
(y, z) = (ay, az). This little loop thus becomes the com- 
putational core of a DA -valued function that returns the 
arctangent of any DA argument. 

v. A GENERAL PROGRAM 

Because DA variables possess a differentiation operation, 
Newton’s method can be used to write a general method 
that works with “arbitrary” DA functions F. The key line 
that sets up the solution4 

‘This is written inefficiently; it would be better to avoid evalu- 
ating F twice. 

496 

PAC 1993



0.8 -.................. ;..- . . . . . . . . . . . . . I....... _ . . . . . . . . . . . ;____ . ..___....____. . ..______._________ 

0.6 -..................:.....-.............~.........-.........~..................~..................- 

:: 
0.1 -I..,,. . . . . . . . ..-... j . . . . . . . . . . . . . . . . . . . . _........... _ . . . . . . . . . . . . . . ..___....____. .._____._._________ 

:., 
‘:, ,.,;G- . . . . . 3rd coefficien: 

;, :. .____*__,__._... y.... . . . ..____...___..._ f . . . . . . . . . . . . . . . . . . . . ...) . . . . . . . . ..___.. 
0.2 _..... + . . . . . ;,:‘. +.:.y. . . . . . . . . . . . . ..i...................~.................~~..... ~...._ 

, : 
. .,/ .,~ , : \ 

L;;, . . . ,:! . . . i 
‘\ 

.‘. 
1: ‘. 

. 0 ,?.... \‘.-.......; . . .._.. > ,..____. ,’ a- 
, 

-; . . iith coafficien: ..-.. u:-;.;u..+.-.s I.._.__,Y 

\ 
‘\ 

*../:--,r ; *i-i.-; ____ t’.-: ____ I:::-...;---- _______ fnd_coefflc.E- 
‘. ‘\ I . : 

-0.2 - :+.:-..! L; ?r . ..L. :.;,:.$h. ..-__.e... r.~~~.~...,,~...~...,~~~ssf~i~~~.?~~ 

_ i 
.I : \‘, ., : ‘, Xst coefficien: -- ‘,-‘c --,-v--m- ----&-----,---------<---~~- ____ 

-0.4 -...... y../ . . . . . . . . . . . . . . . . . . . ..-...... . . . . . . . . . _ . . . . . . . . . . .~................ j . . . . . . . . . . . . . . .._- 
.,. : 

-0.6 , , 1 I 
II 2 4 6 8 10 

Figure 1: Behavior of the coefficients with iteration number. 

G = x - ( F(x) / FW.D(n) ); [31 

where G and ‘I are DA variables, F is a DA -valued function 
of a DA argument, and .D is the differentiation operator.’ 
G will be a DA variable corresponding to a single Newton 
step. Once it is constructed, iterating the line 

(41 
7. = G.mltiEval( x 1; 

Etienne Forest, Martin Berz, and John Irwin. Nor- 
mal form methods for complicated periodic systems: 
A complete solution using differential algebra and lie 
operators. Particle Acceleraiors, 24:91, 1989. 

will make I, with all its derivatives, converge to a zero of 
F. To repeat the example of Eq.(3), we then define 

[51 
DA F( DAC x ) { return ( x - cos( m*x ) ); 1 

Jean Charles Gilbert. Automatic differentiation and 
iterative processes. Optimization: Methods and Sofl- 
ware, 1(1):13-21, 1992. 

before entering the main function. The complete pro- 
gram, although short (about 60 lines) is too long to 
be included here. For those would like to experi- 
ment with the program and who have a CSS com- 
piler, it and the MXYZPTLK package can be ob- [6] 
tamed OS is via anonymous ftp from calvin.fnal.gov 
in the directory /pub/outgoing/michelotti/mxyzptlk or 
/pub/outgoing/michelotti/beamline.e 

171 

Leo Michelotti. MXYZPTLK and BEAMLINE: C++ 
objects for beam physics. In Advanced Beam Dy- 
namics Workshop on Effects of Errors in Accelera- 
tors, their Diagnosis and Corm&ion. (Corpus Chrisfi, 
Tezas. October 3-8, 1991). American Institute of 
Physics, 1992. Conference Proceedings No.255. 

__ MXYZPTLK: A practical, user-friendly CSS 
implementation of differential algebra: User’s guide. 
Fermi Note FN-535, Fermilab, January 31, 1990. 

REFERENCES 

__ A note on the automated differentiation of 
implicit functions. Technical Memo 1742, Fermilab, 
June, 1991. 

[I] Martin Berz. Differential algebraic description of PI Gordon Pusch. Private communication. 
beam dynamics to very high orders. Parlicle Accel- 
eralors, 24(2):109, March 1989. (91 

[2] G. Corliss and A. Griewank, editors, Automatic Dif- 

ferenliolion oj Algorithms: Theory, implementation, 
and Application. SIAM, 1991. Philadelphia, PA. 

Joseph Fels Ritt. Diferenttaf Algebra. American 
Mathematical Society, New York, 1950. 

‘n is an integer array needed by .D; essentially, n tells .D which 
derivative is desired. 

6These files may be moved eventually. 

PAC 1993


