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Abstract 

We discuss applying the regularization method of 
Tikhonov to the solution of inverse problems arising in ac- 
celerator operations. This approach has been successfully 
used for orbit correction on the KSLS storage rings, and is 
presently being applied to the determination of betatron 
functions and phases from the measured response matrix. 
The inverse problem of differential equations often leads to 
a set of integral equations of the first kind which are ill- 
conditioned. The regularization method is used to combat 
the ill-posedness. 

1 Introduction 

Inverse problems of differential equations, which determine 
the physical properties (e.g. betafunctions, phases) and 
causes (corrector strengths) from measured data (orbit dis- 
placements) have wide applications in many fields. Unfor- 
tunately, these problems are inherently ill-posed computa- 
tionally [3]. Their solutions do not smoothly depend on 
the input data. Small errors in the input data will cause 
big changes in their solutions. If we solve them directly on 
finite precision computers without applying special tech- 
niques and if the dimension of the problem exceeds some 
limit, oscillations will occur and the results may diverge if 
under iteration. 

This paper gives a simple illustration of why the in- 
verse problem is ill-posed, and introduces the regulariza- 
tion method, which is used in the orbit correction of NSLS 
storage rings and a simulation model for determination of 
ring parameters from the measured local bump ratios. 

2 Inverse Problems and Ill-Posed- 
ness 

To study a dynamic system, people solve differential equa- 
tions. The motion of a particle in the storage ring is gov- 
erned by a second-order differential equation [l]. If the co- 
efficients (i.e. the system parameters) of the equation and 
the driving force satisfy certain conditions, finding its solu- 
tion is well- defined and conditioned. To solve a differential 
equation is to integrate the effects of all the sources. HOW- 
ever, the reverse process of finding the distributed sources 
from the cumulative effects is a totally different matter. 
The immediate question is the uniqueness of its solution 
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because the effects caused by some sources could cancel 
each other. Generally speaking, the inverse problem of 
differential equations leads to integral equations [3]. This 
is expected because the differentiation and integration are 
inverse operations. However, to solve the produced inte- 
gral equations is far more difficult than solving the original 
differential equations. 

Let’s take a simple example of solving the inverse prob- 
lem of the following equation: 

2 + K(s)x = F(s) 

with some boundary or initial conditions, where D < s 5 6. 
The inverse problem is to determine J<(s) from the known 
solution z(s), a 5 s 5 b. 

It is not possible to find analytical solutions of inverse 
problems in most of the cases. In practice, the following 
iterative procedure is employed. 

Let. 

Ii,+, = I<, + 6K, and z = t, + 6x, (2) 

be the (n+ l)th iterates of It’ and 2. Ko is the initial guess. 
Substituting Eq. (2) into Eq. (1) and neglecting terms of 
0{6z,6&}, one obtains 

2 + Kn(s)xn = F(s) 

and 
d~h) 
- + Ii”(S)6X, = -x,6li,(s) 

ds2 (4) 

By applying the Green function to Eq. (4), 

I 

b 
G,(s,s’)(-z,(s’)61C,(s’))ds’ = S+“(S) (5) 

a 

Eq. (5) tells that what relates 6I(, to 6x, is a Fredholm 
integral equation of the first kind, which is notorious for 
its ill-posedness. It presents a great challenge to obtain 
SK,,(s) from the known 6x,(s), especially in the case when 
6zn(s) is derived from the measured data and inevitably 
has errors. 

To make description simple, let’s rewrite Eq. (5) in a 
more general form 

J 

I 
G(s,s’)O(s’)ds’ = p(s), c<s<d (6) 0 

where p(s), c 5 s 5 d is the known function and B(s), a < 
s < b is unknown. Suppose e,(s) is a solution of Eq. (6). 
Let 

&J(S) = O,(s) + N sin ns (7) 
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where N and n are arbitrary numbers. Using Eq. (6) one 
finds 

J 

6 

G(s, s’)(S,(s’) + N sinns’)ds’ 
0 

b 

= p(s) + N 
J 

G(s, s’) sin ns’ds’ 
a 

Theoretically, in order to make 02(s) the solution of Eq. 
(6), the following equation must hold, 

J 

b 

N G(s, s’) sin ns’ds’ = 0, c<ssd (8) 
P 

On a computer with finite precision, Eq. (8) always holds 
for sufficiently large n. 

Suppose we solve Eq. (6) numerically on a grid si, i = 
1,2;..,M, where s1 = c and SM = d. By using a well- 
known theorem, 

,Jiix ab f(s) sin nsds = 0, 
J 

it is easy to show that we can make N si G(si, s’) sin ns’ds’ 
arbitrarily small for i = 1,2, , M if n is large enough. If 
they are smaller than the precision of the digital computer 
on this grid, 8,(s) becomes a solution of Eq. (6). 

Note that it is very easy to apply the previous analy- 
sis to the orbit correction problem and obtain the same 
conclusion. As a matter of fact, the analysis is much sim- 
pler. The response matrix in the orbit correction is the 
discretized form of the Green’s function. 

3 The Regularization Method 

The regularization method was devised and developed by 
Tikhonov et al. [2] for the purpose of reformulating ill- 
posed problems into problems of a more well-posed nature. 
The revised problems do not have the same exact solution 
as the original problems, but in most practical cases, the 
data is inexact and thus no method can possibly extract 
the exact solution. However, as the errors in the original 
posed problem tend to vanish, the regularized solutions are 
designed to converge to the exact solution. The conver- 
gence can be weak, uniform, or of higher orders depending 
upon the order of regularization chosen. 

The regularization method uses stabilizers to form a new 
regularizing operator to replace the original ill-posed op- 
erator. Different stabilizers produce different regularizing 
operators. Which type of stabilizers to use depends on the 
nature of the ill-posed problem. This method is widely 
used to solve many kinds of ill-posed problems such as 
the integral equations of the first kind and of the convolu- 
tion type, optimum control, linear algebraic equations etc. 
Tikhonov used functional analysis and gave this method a 
rigorous mathematical deduction and proof. To introduce 
it in detail goes far beyond the scope of this paper. What 

interests us here is how to use it to solve the ill-posed linear 
algebraic system: 

Al9 = I. (10) 

If we use 11 0 113 as the stabilizer, the regularization method 
minimizes the following functional 

II A0 - x II; + Q II 0 llil (11) 

where II z llz= (xxi) ’ 1/2 stands for the geometric norm 
(or 2-norm) of the vector x, and a is a positive constant 
and called the regularization parameter. 

After some manipulations, the new equation used in the 
regularization is 

(ATA+ al)8 = ATz, (12) 

where AT is the transpose of matrix A and I is the unit 
matrix. 

Note: If we use different stabilizers, we will get different 
equations. However, we want to minimize the corrector 
strengths in our case and hence choose 11 6 11: as the stabi- 
lizer. 

The matrix ATA in Eq. (12) is non-negative symmetric 
and its eigenvalues are non-negative. If we add a positive 
constant a to its diagonal, its eigenvalues will be greater 
or equal to a. If we select suitable (I, the system of Eq. 
(12) becomes well-conditioned, 

How to select (I is very important in the real compu- 
tations. The bigger the a is, the more stable Eq. (12) 
becomes and the farther the regularized solution is from 
the true solution. However, if the Q is chosen too small, 
Eq. (12) would not be well-conditioned. If a equals zero, 
Eq. (12) becomes the normal equation of the least square 
method, which provides a way to solve an overdetermined 
or underdetermined linear system but does not address or 
control the ill-posedness of the problem. 

4 Orbit Correction 

In a circular machine, the orbit change due to a change in 
the corrector strengths is expressed as 

A6 = 2. (13) 

where 0 = [0,],1 5 i 5 NC,x = [Zj],l 5 j 5 N,, and 
matrix A is the N,,, x NC response matrix, N, and NC are 
number of monitors and correctors, respectively. Eq. (13) 
is widely used in the orbit correction. 

Eq. (13) could be overdetermined (N, > N”,), deter- 
mined (N, = N,) or underdetermined (NC < Nm), The 
least square method yields 

ATA = ATt. (14) 

Theoretically, Eq. (14) may have one solution or infinitely 
many solutions. 

According to the analysis in the previous section, Eq. 
(14) is not well-conditioned. Since the dimension of matrix 
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AT A is N, by xcI’,, how ill-posed is Eq. (14) mainly depends 
on how large NC is. When doing study on our VUV and 
X-ray rings, it was found that in many cases if no more 
than some numbers of correctors were used, we could solve 
Eq. (14) directly. Once we used more than this number 
of correctors, bad oscillation started to occur and Eq. (14) 
started to give unreasonably large kick values. The more 
correctors were used, the worse the results became. 

In order to combat the ill-posedness, several algorithms 
have been developed in the accelerator community. 

l The Micado method [4] selects N (normally 2 to 4 
in our operations) “most effective” correctors. That 
is, it does not solve the whole Eq. (14). Instead, 
it selects only a small number N equations in Eq. 
(13) and the dimension of the resulted normal equa- 
tion Eq. (14) is N (2 to 4 in our case). Because 
the number of correctors used are very small, the 
ill-posedness is effectively controlled. 

. Recently, the singular value decomposition (SVD) 
method has entered the orbit correction field [6, 71. 
The SVD method is very powerful tool to solve least 
square problems. It not only diagnoses the problem, 
it also solves it. If the dimension of matrix A is 
large, its singular value set has very small numbers 
and possibly zeros. The SVD method simply ignores 
these small and zero singular values to control the 
ill-conditionedness. 

The regularization method has been used successfully 
in the orbit correction in the NSLS storage rings both for 
study and operation. 

According to the analysis in the previous section, This 
method solves the equation 

(A=A + uI)8 = ATz, 

instead of solving Eq. (14). 

(15) 

The key to a successful execution of the regularization 
method is choosing a good Q, which depends on the de- 
gree of the ill-posedness of the problem and also depends 
on the magnitude of the elements in the matrix A. For 
example, suppose we selected a very good cy to solve Eq. 
(15) and suppose now we use different units to measure 
the response matrix A and all elements in A become 10 
times in magnitude of the original elements. The elements 
in the matrix ATA will be 100 times of t,he original values. 
In order to solve the new Eq. (15), the (Y has to be chosen 
100 times larger. 

In practice, we simply use the trial-and-error method to 
find the best 01. At first, we pick a typical number in the 
matrix A and divide it by 3 or 4 and use the quotient as 
the initial guess of (1. Normally, after a few trials, the a 
could be determined. Fortunately, once a good LY is chosen, 
it could be used in successive sessions unless the lattice of 
the accelerator changed. Generally speaking, the resulting 
8 values are not very sensitive to cy if it is not chosen too 
small. For example? when doing orbit correction on the 

VUV ring, we use 0.2 as a for the vertical plane and 0.25 
for the horizontal. While working on the X ray ring, 0.1 is 
used for both the vertical and horizontal planes. However, 
if we use 0.05 or 0.2 as (Y for the X ray ring, the results 
do not differ much. Let’s take a case in the horizontal 
correction (55 correctors were used) of the X ray ring as 
an example. If (Y = 0.05, the corrector kicks ranged from 3 
to 460 digits, and the RMS difference after correction was 
0.0605mm; if a = 0.10, kicks 1 to 291 and RMS 0.0675; 
if a = 0.20, kicks 3 to 185 and RMS 0.0750. Zero Q gave 
unreasonably large kick values. The SVD method with 
optimization gave similar results. However, the Micado 
and harmonic methods were able to reduce the RMS to 
only 0.10 and 0.16, respectively. We have many similar 
data sets. 

The regularization method not only makes the orbit cor- 
rection process more stable, but also minimizes the correc- 
tor strengths. All the available correctors are used. The 
results show that it uses much smaller corrector strengths 
than the traditional methods and gives very good cor- 
rections. Generally speaking, The results generated by 
the regularization method are comparable with the SVD 
method with optimization, and better than the harmonic 
[5] and Micado method. 

5 Concluding Remarks 

We have discussed applying the regularization method of 
Tikhonov to the solution of inverse problems arising in ac- 
celerator operations. This approach has been successfully 
used for orbit correction on the NSLS storage rings. We 
have obtained high precision correction with weak correc- 
tor strength, eliminating the “fighting” of corrector against 
one another. In this case, the regularization method cor- 
responds to a least square minimization of the orbit devia- 
tions, with an additional constraint to minimize a weighted 
measure of the corrector strengths. 

At present, we are applying this method to the determi- 
nation of betatron functions and phase from the measured 
response matrix 

Aij = ~COSU(\$:-4jl-T) (16) 
Preliminary results seem promising and we hope to report 
on this work in the future. 
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