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Abstract 

At injection, the presence of linear coupling may 
result in an increased beam emittance and in increased 
beam dimensions. Results for the emittance in the 
presence of linear coupling will be found. These results 
for the emittance distortion show that the harmonics 
of the skew quadrupole field close to vz + v,, are the 
important harmonics. Results will be found for the 
important driving terms for the emittance distortion. It 
will be shown that if these driving terms are corrected, 
then the total emittance is unchanged, c, + E,, = ci + cs. 
Also, the increase in the beam dimensions will be limited 
to a factor which is less than 1.414. If the correction 
is good enough, see below for details, one can achieve 
Cl = fz, 5s = cy, where ci, cs are the emittances in 
the presence of coupling, and the beam dimensions are 
unchanged. Global correction of the emittance and beam 
size distortion appears possible. 
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g is the transpose of R. 

v,p, and u,p, are uncoupled. Thus v,p, satisfy 
differential equations with periodic coefficients whose so 
lutions have the form 

v = pt exp (+I) 

p, =P;f(-al+i)exp(+~) 

A second solution exists with $1, pi, (11 replaced by 
Ijiq, &, oz. As in the case of 2 dimensional motion 

61 = xv2 + hvp, + PlPl (4a) 

is an invariant. yi = (1 + of) /pi. Similarly, 62 is an 
invariant, 

I. THE EMITTANCE FOR COUPLED MO- 
TION 

One definition for the emittances when the particle 
motion is coupled was given by Edwards and Teng.[l] 
In four dimensions, one can go from the coordinates 
r,p,,y,p, to an uncoupled set of coordinates u,pv,u,pu 
by the transformation [l] 

z=Rv 1: 
PZ X= 

0 
V= 

Y 

PY 

v 

PV 

i) 

u 
(1) 

PU 

R= 
I cos $9 Bsinp 

> -Dsinp 1cosIp 

I and D are 2 x 2 matrices. I is the 2 x 2 identity matrix. 
D = D-i and IDI = I. R is a symplectic matrix 

7iR=l 

XGi.9 (2) 

62 = y2u2 + 2azup, t- !32p:. (4b) 

For two dimensional motion, one can find o,P from 
the one turn transfer matrix M (s + L, s). 

In 4 dimensions, oi,& and crs,& can be found 
from the one turn transfer matrix. The process is quite 
involved [l], and using Eq. (4) to find ci,cz when the 
transfer matrix is known is also involved. 

A second definition of the emittance was suggested 
by A. Piwinski [2] which seems easier to apply. The 
emittance ti is defined by 

(1 = ;; s x 
I I 

2 

(5a) 

11 is the 4 vector for the eigenfunction of the transfer 
matrix, which are assumed to be zi,zs = Ii, IQ, zq = 2:. 

Since z’, Sx has the form of the Lagrange invariant 
[3] ci is an invariant. It will be shown below that ci 
defined by Eq. (5a) and ci defined by Eq. (4) are the 
same. In a similar way, c2 is defined by 

c2 = ;; s x 
I I 

2 

Note that x1 and 2s have to be normalized so that 
‘Work performed under the auspices of the U.S. Depart- A,* 
ment of Energy. x,S x,&s x,=2i (‘5) 
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Analytic expressions for x1, zs were given in a previous 
paper. [4] These results for +I, zs when put in Eq. (5) 
give an analytic expression for cr and 62. 

To show that cr,cz defined by Eqs. (4) and Eqs. 
(5) are equal, one may note that since n,pvr u,pu are un- 
coupled coordinates, the eigenfunctions in this coordinate 
system may be written as 

G= 
G, 0 [ 1 0 GY 

G, = 1 
The eigenfunctions being known, see Ref. 4,5, one 

can now compute cr and cs 

exp (+z) 

\ I 
111 = 

one finds 
One can then show that 

..,* 
v1 s 211 =;; s vg = 2i, 

and 
W. 
I I 

2 
?J1 s v = YlV2 + 2a1vp, + p,2, 

which is c1 according to Eq. (4). 
One can show that since z‘ = Rv and R is symplectic, 

that 

1”; s xl2 = 1;; s VIZ) (8) 

and thus the cr defined by Eq. (5) is the same as ci 
defined by Eq. (4). One may note that zr = R “1. 

It also can be shown that 

where the integral is over the region of 4-space which lies 
inside the two surfaces 

rl(z:,Pc,Y,P,) = 9 

fZ(I:,Pz,Y,Py) = 62 

This can be shown by transforming the integral in Eq. 
(10) from the z coordinates to the v coordinates and 
using the result /RI = 1. 

II. ANALYTICAL RESULTS FOR THE EMIT- 
TANCE DISTORTION AND ITS CORREC- 
TION 

Analytical results for the eigenfunctions of the 4 x 4 
transfer matrix were found in Ref. 4. Assuming the 
eigenfunctions are known the ~1, cs can be computed as 
follows % 

PZ III 11 =G pf)x 
Y 94 

PY PSY 

(11) 

(13) 

Cl = I%112P~, + IPsrll%: - %P,z (P;ll%l + C.C.) 

+ 151 12P;, + IP,,l 12s,2 - ‘)yP,, (P;gl7Yl + C.C.) 

+ PllzPsy (P;zlP;yl + C.C.) + ‘l”‘lY (P;,,P,Yl + C.C.) 

- PrFBy (dIPlJY1 + C.C.1 - CP7lY (P$oln;,;l + cc.) 

P qr = (1/~z)d~Jd~~,~.,, = (Wy)dl~yldey 

(14) 
One can now find analytic expressions for cr by 

substituting for ni the results found in Ref. 4, 5. This 
result is usually quite complicated. One interesting case 
is when a correction system has been used to cancel the 
b, and c, for n N v,+v,, which generate the larger terms 
in the expressions for the eigenfunctions. Let us assume 
that enough b,, c, have been corrected so that, see Ref. 
43 the eigenfunctions can be written as 

G = A exp (he,) 

oy = B exp (iv,,e,) 

P - iA exp (i~~~ti,) v - 
(15) 

prly = iE exp(iUy,By) 

It has been assumed that the difference resonance has 
also been corrected, and that w,,v, is very close to the 
nearby difference resonance vz-vy = p, so that vzJ/vz N 1 
and ~~~~~~ N 1. It will be seen that correcting the b,, c, 
for n N V, + vy and the nearby different resonance will 
essentially correct the emittance distortion and the beam 
size distortion. 

Putting the corrected results for the eigenfunctions 
Eq. (15) into the emittance result Eq. (14) one finds 

e = IAl (P;Z. + 17:) + PI2 (P;, + 7;) 

+ pqzpqy (A*B + c.c.) 

+ qzqy (A’B + CL) (16) 

- prqv (-iA*B + cc.) 

- qrpsy (-iA’I3 + C.C.) 
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There are two solutions of interest corresponding to 
how well one can correct Au, 

Case 1. ]Av] < ]vz - v,, - p] 

Ivz - vy - p( < ]Av] 
(17) 

Case 2. 

For case 1, ]Av] < ]vz - v,, - pi then 

Zmax = &Z 

Y max = JFz 

For the first case, ]Av\ << Iv,-vy --pi, then the coefficients 
and there is no growth in beam size. 

For case 2, jv, - vr - p] < ]Av] then 
A, B in the eigenfunctions satisfy [4] 

IAll = 1 Bl =o 

l&l = 1 A* = 0 

Then for case (1) Eq. (16) gives 

~nlax I (Pz (Cr + fy))+ 
(18) 

Ymax 5 (Py (es + fy))+ 
(24) 

For the case where cz = cr, then zmax 5 1.4 (p,c,)t 

(19) 
and the coupling may increase zmax by the factor 1.414. 
So in case (2) Iv, - v,, - p] < ]Av], then when the b,, e, 

(1 = Cr,EZ = cy 

where use has been made of the results 

qr +p;, = ^izr2 + 2a,zp, + pzp: = cc 

2 
rly + PZy = Yy Y2 + %Y,Py + PyP$ = fy 

Thus in case 1, ~1, c2 are the same as cz, cr. 
For case (2), Iv= - vr -pi < ]Av] then [4] 

JAll = J&l = l/A 

l&l = I&( = l/&j 

A;B1 + A;Bz = 0 

Then for case (2), Eq. (16) gives 

C* = fl + 62 = c, + cy 

(23) 

(20) 

(21) 

(2‘4 

and Au are corrected one may still have a beam size 
increase of the factor 1.414. 

IV. OTHER BEAM DISTORTIONS 
This section applies the eigenfunction method to 

computing the change in the beta functions and the 
normal mode rotation angle. Expressions are found for 
the important driving terms of these orbit parameters. 
The results are given below. For the details see Ref. 4. 

We no longer have cr = t,, c2 = cy as in case (1) however 
cl is not increased by the linear coupling. 

Thus, if one corrects enough of the b,, e, for n 2~ vr + 
v, and also corrects Au, the driving term of the nearby 
difference resonance, v, - vr = p, then the emittance 
distortion has also been corrected. We will either obtain 
c1 = E,, c2 = zy or z1 + c2 = cz + cy depending ou how 
well Au has been corrected. 

III. ANALYTICAL RESULTS FOR THE BEAM 
SIZE DISTORTION AND ITS CORRECTION 

In the previous section, results were found for the 
emittance distortion, and it was found that if the b,,,c, 
for n E v, + vy and Au are corrected, then the emittance 
distortion is also largely corrected. For 4 dimensional 
motion, the connection between the beam size and the 
emittance is not as simple as it is in the 2 dimensional 
uncoupled case. In this section the maximum beam size 
will be computed when the b,, e, and Au are corrected. It 
will be shown that the beam size distortion is also largely 
corrected, although in one case it may be increased by a 
factor which is 5 1.414. 

The results for tmax, ymax are given below. See Ref. 
4 for details. 

exp [-i (n + p) 0,] + C.C. 

The results for the beta functions, Eq. (25) and the 
results for cosp, Eq. (26), show that they have the same 
important driving terms 6,,, c, for n = v,+v,. The higher 
order v-shift also has the same driving terms. Thus a 
correction system that corrects these driving terms might 
be able to correct all these three effects simultaneously. 
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