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Abstract 

The application of the analytical method of spin calcula- 
tion is described. The calculation of both orbital and spin 
motion is based on Lie operators technique. The computer 
code SPINLIE realizing this method is discussed. The in- 
put language of SPINLIE is compatible with that of MAD. 
In SPTNLIE elements are described as “thick lenses” for 
spin motion as well as for orbital calculations. The ex- 
plicit expressions of Lie operators were found for orbital 
and spin motion for elements of different type (bending 
magnets, quadrupoles, sextupoles, RF-cavities, solenoids, 
kickers). The rules of addition of spin transformations were 
obt,ained for the beam passing the collider structure. Good 
agreement was found for SPINLEE results for the linear 
spin resonances in comparison with the other codes (SITF 
[l], SMILE [Z]). The first results are presented for the 
calculation of nonlinear spin resonances. 

I. INTRODUCTION 

Calculations of t,he spin motion in colliders are interesting 
in connection wilh different schemes of experiments with 
the polarized beams. There are several computer codes 
for polarization degree calculations. Since there is a ne- 
ccssity to estimate the influence of nonlinear orbital and 
spin mot,ion on the polarization degree, the attempts have 
been made to find more reliable and adequate methods for 
these calculations. This report presents a new computer 
code SPINLIE for polarization calculations for accelerators 
and colliders. The terms of sextupole type for orbital and 
quadratic for spin motion are precisely taken into account 
due to the usage of the Lie operator technique. 

hlost of the problems where the nonlinear character of 
orbital motion should be taken into account (dynamical 
aperture, lifetime, . ..) require taking into consideration 
large amplitudes as well. Application of analytical meth- 
ods for these purposes is not always justified. But these 
methods have some advantages when we are dealing wit,h 
problems where small amplitudes are under examination 
(chromatism, polarization, . ..). The analytical methods 

have the best accuracy and, as a rule, higher calculation 
speed, since all elements (linear and nonlinear) are consid- 
ered to be thick. 

II. THE BRIEF COMPARISON OF 
DIFFERENT CODES FOR SPIN 

CALCULATION 

It, is clear, that, the main point for comparison in different 
approaches is the “level” of nonlinearity which is allowed in 
the codes. As is known, the resonance order is 1 t 1 + 1 k, 1 
t 1 k, ) + / k, ) for aresonance vsp = ktk,u,+k,v,+k,v,, 
where v,~, v, are spin, hctatron and synchrotron tunes 
respectively and the values k, k,(i = I, z,s) are integer. 

The connection between the order of the resonance and 
the solution of the spin motion equation is determined, as 
is known, by the so-called the “resonance denominator” in 

the form [3] (1 -ezni(“+~~ ““‘)) and describes the N-order 
resonance (N = xi 1 k, I) correspondingly. In this context 
the “spin” codes SLIM [4], SITF and ASPIRRIN [5] are 
purely linear I. The example of the linear calculat,ions is 
presented in Fig.1 for code SITF and new code SPINLIE. 
Good agreement is received. 
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Figure 1: Linear resonanses for LEE’ structure N21C20. 

The nonlinear N-order wsonance is caused by t.hree rea- 
sons. They are: 

‘The code ASPIRRIN estimates the strength of the synchrotron 
sideband spin resonances due to the usage of enhancement factors 
k51. 
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a) the correspondent order term ZcN) of the precession 
frequency fi expansion in terms of the orbital vector 2; 

b) all kinds of products of the terms C(k) such, that 
Ck = N. These products appear from the terms of so- 
called B-ordered solution [3] of the spin motion equation 
and describe noncommutation of the rotation sequences; 

c) the terms which take into account the influence of 
nonlinearity of the orbital motion. 

All “linear” codes include the term w’ = CZ(~) from the 
item a) because w’ has the same (first) order of infinitesimal 
as orbital vector z’. The codes SMILE and SODOM [7] 
take into account item b) only for the high order resonances 
(for these codes w’ is the same as for “linear” codes). The 
code SITROS [S] involves all items (second order), but the 
last of them only partially. The terms are omitted, which 
describe the nonliearity contribution caused by the finite 
thickness of elements. 

All terms a)-c) are taken into account for the second 
order resonances in the computer code SPINLIE. 

111. LIE OPERATORS 

There are two completely equivalent methods for nonlin- 
ear analytical matrixes calculations: perturbation method 
[9] and Lie operators technique [lo]. As in any correct 
method, the starting and the final formulae are absolutely 
the same, but the intermediate steps are different. It 
seems, that the Lie operator method is shorter but, prob- 
ably, a more formal way to the result. 

A. Operators of the Orbztal and Spin Transformations 
In accordance with the Lie technique [lo], [ll] the equa- 
tion for spin motion has the solution in the following form 
for the Hamiltonian ‘FtHorb + 6Z, which does not explicitly 
depend on the azimuth [12]: 

G(8) = e- e%b+An:,-@) = MfqO), 

where the precession frequency vector 6 is defined by 
HhlT’s equation [13] and n’(O) is the initial spin vector 
for D = 0. The semicolons emphasize the operator nature 
of this formula. 

In accordance with the Hamilton equations this operator 
satisfies the equation 

E=M:-(31 +&=t): 
dQ 

orb 

Let us separate the total Hamiltonian in two parts: all 
terms, which describe the linear orbital and spin mo- 
tion (X0(2, 6)), and all terms of high orders ‘X1(2,6) + 
‘Ftz(,??,n’)). The part 310 includes the polynomial of the 
2-nd degree over orbital vector z‘ from %b and part 
c0 z ~(‘0) of the spin precession frequency d, which does 
not depend on z’. Similarly, ‘H1 includes the poly_nomial 
of the 3-rd degree from x,& and the linear (over 2) part 
w( ) of d. At last, as we consider here the sextupole or- i 

der of the nonlinearity only, therefore ‘K2 includes only the 

quadratic part w(~) of 6: 

310 = h!‘)ZiZj + Ujp)Tl,, 

Xl = hijk.ZiZjZk + Utj)naZt, ;:, 

312 = (2) 
w,*jneZizj > 

where all Roman indexes i, j, .,, correspond to 1,2 ,..., 6 and 
all Greek indexes a, ,B, .._ correspond to z, r, 1. 

Let us represent the operator M as a product of two ex- 
ponential operators [ll], [12]: M = M,.,Mo. As is known, 
operator MO is simply matrixes for the linear transforma- 
tion from the initial to the current azimuth 0: d(0) for 
orbital or S(Q) for spin motion. Using the equation for 
the operator M, the Lie technique and restricting the sex- 
tupole terms only, one can find: 

M, =e - I? ,-:I1 :fl? 
LT-:fl:-:f*:+2’ 

where E is a unit operator and 

a :f,: = - 
.I 

dQ’ : (-IH1(d~,SC) lo,) :, 
II 

@ :f2: = - 

J 

dQ’ : (-H2(dg, SC’) 18,) : + 

+ ; 4’dQ’ : ( : fl I#,: ( - ?&(dZ,S,Z) 10,)) : 

Thus, we obtain the following rules for the calculation of 
the Lie operators F, W(‘) and W(‘): 

F,,,~(Q) z l’dB’hI~!,d,i(B’)d”,j(B’)d,t(“), 

B p&‘(Q) = 0, 
J 

dO’S~~(O’)w~‘dj,(B’), 

w:~(Q) = id dQ’(S,;‘(B’)w~~,dli(Q’)dij(Q’) + 

+ ~e,p,~~:‘(8’),$;:(B’);lil)dl-j(O’) + 

+ ~~~(B’)W~~dII(O’)~,nl~;nij(B’)), 

B. The rules for transformatzon of the operators 

Let us denote all constructions for the transformation from 
the azimuth 00 to 0’ as: A j~,,-tz,~ A(“), S IB~--~,- SC”), 
F Isa+8!~ F-(U), w(1) I&)&E u(l), w(2) (8038’E zd2). 
Then 

Z;(V) ZZ ,4t,“‘Z~(8,) + A!,“)Jjk~~~~ZI(BQ)Z*(81 

qo,) = S(“)e- u’:‘z.(s”]n,is,) e- U~::Z,(~“)Z*(~o)nS(~.). ,1;(& 

Similarly, let us use for the transformation from 0’ to 0 
the values A!;), S(“), +(w), u(l), Uc2) and for “merging” 
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transformation from Ba to 0 the values A,j (w), s(w), F(W), 

W(l), ld2). Then, the rules of merging of elements to a 
unified element from 0s to 8 are: 

d!u)) = 
qyy) = 
s$’ = 
w(l) = 
$, = “‘3 

+ 
+ 

d$;)d(,‘1) 

J’/,“i + $“c(;‘d(“>d;~, “I 

u(f) + S”‘‘-&;;.),&) 

UT;! + S(“~~--,j:),d~;),&‘) + Q’3 13 
1 
FjeQbUpi ’ IXvAk (l) (“)-’ (‘)A:) + 

&$$.)d;)J,,,J~;. 

Iv. SPIN POLARIZATION 

CALCULATION 

In SPINLIE code the calculation of the equilibrium level 
polarization is based on the DK - formula [14]. Analytical 
determination of the spin transformation (the sextupole 
order is taken into account for both orbital and spin mo- 
tions) is used. The components of these transformations w 
are the polynoms of orbital variables 2. These polyuoms 
have been determined for each element type of the collider 
magnetic structure. The special rules of explicit summing 
of these polynoms are used for the calculation of one-turn 
spin transformation (linear and sextupol orders). The pe- 
riodical solution is found for the equilibrium spin vector 
from the one-turn transformation. This solut$n explicitly 
depends on the first and second powers of Z and so one 
can find the spin chromaticity vector o?and the degree of 
the equilibrium polarization. 

A. Periodical solution 
bet us denote the one turn transformation from D to 0+2x 
as A 104+2n= At”), S /s--ts+as= Sew), T Is-a+zr- F@“), 
W(l) Io-+o+~~E IV(‘), WC21 Io~B+~~z W(2). To find the 
periodical solution ;I-(@; z(8)) = a(0 + 2~; z(0)) we use 
the “gradient” method. It is based on the introduction 
of small dissipation into transformation and calculation 
of relaxative solution. Practically, it means introducing 
synchrotron damping decrements a(“) [15] into the one 
turn orbital matrix A and summing total transformation 
so many times N that the AN becomes negligible with 
computer accurancy. Physically, it corresponds to syn- 
chrotron damping of orbital imperfections on azimuth 6’ 
(due to photon emission) and summing of spin distortions. 
The resulting transformation from Q to 0 + 2nN will be 
periodical and is described by the following expressions: 

4 e-t8+2*N = d(“)N Ns 0, 

SI 8-+@+2nN = SW, 

g le-8+2rN F(“)d(“)“d(“)“d(“)” N&y 7; 

= 5 { (S(W)-‘)“~i2)d(“‘)“d(“)” + 

n=o 

+ ;g (.qk[~(lJ, (S(“rl)“-t. 

)ji)(l)d(w)“-k d(“)Ed(“)k + 1 
+ (s(-,-‘)‘$, [ 2 db#+ 

k=O 
J~(“),@)k,@)k]} N=&? z), 

The summing can be made by two one-turn transforma- 
tion, two two-turns, two four-turn, . ..and so on in powers 
of 2 this procedure is not too long and 20-25 summings 
are usually enough. This multiturn transformation corre- 
sponds to the condition of periodicity: 

Z(Q) = &(B) + z+Q, Z(Q)) + GG(Q, Z(O), Z(Q)). 

B. Spin Chromaticity and its lransjor~nnion 
Now we can find the periodical spin vector z(8). The spin 
chromaticity can be determined from it as a derivative over 
the sixth component of the orbital vector 2. It is necessary 
to integrate the spin chromaticity over the ring in order to 
calculate the polarization degree. There are two possibili- 
F: calculate z(0) for each current azimuth 0 or calculate 
n(6’c) for initial azimuth and after that. “pull” this vector 
from Bc to 8. We found the following rule for the “pulling”: 

w(l) Is e+2 N (II - 7 = se, IBo-0 $’ III,-+,+ZaN - 1 
- wji) lea-o }A,:’ /to-e, 

w(2) Is e+?rN ar, - = s op 80-8 1 

I( J+fk’, Is o-.*o+2rN -L$ loo-4 - 
) 

- +A$:) lea-e J+$’ Ieo-ea+2nN - 

- ;wg I eo-eo+arN -J$i le,-.e ) 

J&p~,tl loo-e }A,’ loo--e dlj’ loo-e 

V. SOh4E SPINLIE CALCULATION 

RESULTS 

All presented calculations was performed for the VEPP2-M 
collider structure. Imperfection was introduced by special 
skew. Its strength corresponded to the measured width of 
the coupling resonance. Fig.2 shows the suppression of the 
some resonances for the different kind of the structure sym- 
metry. As was shown earlier the strength of the nonlinear 
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Figure 2: The spin resonances for different kinds of the 
symmetry of the magnetic structure. 

resonance is determined by the contribitions of the differ- 
ent terms. We compare them and the result is presented in 
Fig3 One can see that all terms have approximately the 
same values for VEPPZ-M. We assume that the relation 
between the different terms can been changed for different 
energies and symmetry of collider structures and this is the 
matter for special investigation. 
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