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Abstract 

The spin-orbital motion in proton storage rings is investi- 
gated with help of the methods of Lie operator and com- 
puter algebra. The one-turn transfer map is used to obtain 
the orbital and spin tunes, the invariant functions of the 
orbital motion and the equilibrium polarization direction. 

I. HAMILTONIAN FORM OF 
CLASSICAL SPIN-ORBIT MOTION 

EQUATIONS 

The system of the ordinary differential equations is called 
a Hamiltonian system if it can be represented in the form 

(1) 
where H = H(r’, T) is the Hamiltonian, the binary opera- 
tion {‘, .} is the Poisson bracket with the usual properties, 

The classical spin-orbit equations of the motion in stor- 
. 

age rings or m circular accelerators have the form of a 
Hamiltonian system if we use the Poisson bracket: 

{F(q,Q(q} = Ff.Qp- Fg.QB+ [Fr x Qr] .s’ (2) 

and the Hamiltonian: 
. 

H = Horbi(i, r) + ti(Z, 7) S (3) 
+ 

where z’ = (Z,S) and Z = (9;pT are canonical orbit vari- 
ables, S = (Sl, 5’2, Ss) is a classical spin vector. 

For example, if 7 means the time t, q’and $are canon- 
ical orbital position and momentum variables in a fixed 
Cartesian coordinate system, then 

H=e++c 

where 

I@ = -L((1+ yG)% G-? 
mo-rc (1 +7)c2 

(@v’ 

-CR + 

e, mo are the charge and the rest mass of a particle, c is 
the velocity of light, l?, l? are electric and magnetic fields, 
G = (g - 2)/2, g is the anomalous spin factor, y is the 
Lorentz factor, v’ is the velocity of a particle, A’ and Q are 
vector and scalar potentials [I]. 

The Poisson bracket (2) is degenerated. It has the non- 

trivial Casimir function 1 ,‘?I’. It means that we can de- 
crease the dimension of the system (1) studding the equa- 
tions on the sphere: 1 s’ I= h/2, where ii is Planck’s con- 
stant. For example, we can do this by introducing a pair 
of canonical spin variables (J, $), J is a projection on the 
selected axis, $ is a polar angle in the transverse plane. 
In this case we obtain the Hamiltonian system with the 
classical Poisson bracket in eight-dimensional phase space 
(6 orbital variables and two canonical spin variables J, $I). 
But unfortunately, in this case we lose so important prop- 
erty which we would like to keep: the linearity of the initial 
system in respect of spin variables. 

II. ONE TURN MAP AND ITS SIMPLE 

PROPERTIES 

If the Hamiltonian (3) is a periodic function T, we can 
consider the one turn map which is defined by the action 
of the system (1) for one period: 

Let i = 6 be the fixed point of the map (4). Using the 
Taylor series expansion of the function f(q in respect of 
spin variables we obtain: 

1 

<f = F(Zj) + O(l $ I) 
Sj = A(h) ‘S + O(l S 1’) (5) 

where g(6) = 6 and A(Z) is a 3 x 3 matrix. The map (5) 
preserves the Poisson bracket (2). Using this property we 
find: 

a) The map 5 = F(Zi) is symplectic: 

(d’.J.($) =J 
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b) Every element of the matrix A(Z) is equal to its own 
cofactor. It means that A(Z) is an orthogonal matrix 
and d&A(i) = 1, i.e. A(Z) E SO(3). 

III. LIE EXPONENTS, ORDER 
TRUNCATION, AND 

EXPONENTIAL FACTORIZATION 

Using the Poisson bracket (2) we can define the Lie opera- 
tor : Q(q : and the exponential Lie operator ezp(: Q(?) :) 
associated with the function Q(z?) according to the usual 
rules [2]. 

The length of the vector s’ is proportional to Planck’s 
constant. Consequently, we will neglect terms of order h 
in the map (5). It is possible to show that for any given 
truncation order of the orbital variables m there is the 
Dragt-Finn’s type exponential factorization of the map: 

: Bf”ll : = : Bspin : : Borbt : (6) 
: Borbt : = : Al : ezp(: F3 :). .ezp(: Fr,,+l :) 

:Bspin: = :Az:ezp(:~1’S:).‘.ezp(:~~,~:) 

This factorization represents the map (5) with the preci- 
sion O(] s’] +] Z I”+‘) in the sense that: 

: Bfufj : Z = 2(Z) + O(l 51 $1 z Im+l) 

: B,“ll : s’ = A(z’).~+O(ISI+141mt1).S 

Here Fk(Z) and C?k(Z) are homogeneous polynomials of 
order k. 

The exponential representation is comfortable in the 
sense that it allows to deal not with maps but with their 
symbols (with algebra of Hamiltonians). It is also possible 
to find further types of factorizations which we will not 
mention here. 

IV. INVARIANT FUNCTIONS AND 
EQUILIBRIUM POLARIZATION 

DIRECTION 

The function V(zJ is called an invariant 
map (4) if 

V(z3 = wl4) 

function of the 

(7) 

In this section the conception of the dependent on the 
spin invariant functions is introduced. Taking into account 
that we neglect the terms proportional to A, it is enough 
to consider these functions in the form: 

V(F) = b(Z) + s’(Z) s’ (8) 

If we substitute (8) in (7), we will see that b(Z) is the usual 
invariant function of the orbital part of the map. It means 
that one can find V(,?) only as: 

V(z) = s’(Z) s’ (9) 

Equation (7) for the function (9) becomes: 

A(Z). s’(E) = g’(f(Z)) 

From (10) it follows that 

4 
b) 

(10) 

] z(Z) 1’ is an invariant function of the map F(I). 

If b(Z) = b(F’(Z)) and V(zFj are invariant functions then 
b(S) .V(zZ is an invariant function also. This allows to 
identify two invariant functions VI and Vz if V,(T) = 
b(Z) Vz(TJ or Vz(Fj = b(Z). VI(?). 

We will call the function V(Z) the nondegenerate one 
if ] i(6) ]# 0. In this case it is possible to believe that 
1 s’(Z) I= 1. 

The Poisson bracket of two invariant functions VI(?) and 
Vz(z? is an invariant function Vs(zT) again. 

. 
v3(4 = [&(q x .h(ql s 

It means that if the matrix A(6) # I then there is not 
more than one nondegenerate invariant function (with the 
precision up to the multiplication on the invariant function 
of the orbital map). 

It is possible to show that if the nondegenerate invari- 
ant V(z?) in the form (9) exists and the fixed point of the 
orbital motion 4 = 8 is stable then the vector i(Z) defines 
the direction along which the polarization of a particle is 
conserved. This definition of the equilibrium polarization 
direction does not depend on the selection of the coor- 
dinate system and on the Hamiltonian form of the orbit 
motion. 

In the case when the action-angle variables I, ‘p for the 
orbital motion and the Derbenev and Kondratenko vector 
G(1, ‘p) [3] exist, the introduced vector i(Z) gives the one 
turn boundary conditions for n’. 

V. NORMAL FORM METHOD FOR 
MAPS WITH SPIN VARIABLES 

In this part we present an arbitrary order (in respect of 
the orbital variables) normal form algorithm that allows 
to obtain the vector gTZ) in the formal power series form 
in the nonresonance case. This algorithm is in the Lie 
algebraic framework [4], [5] and uses the map factorization 

(0 
As usually, the algorithm consists of a sequence of coor- 

dinate transformations of the map: 

: CJ”ll : = E Cspin : : Corbl : 

: Co& : = erp(: I<,+1 :). .ezp(: I& :) : Cl : 

:C+: = erp(:~~.~:)...ezp(:~*.S:):C2: 

Here : Corbl : is the coordinate transformation reducing 
the orbital part of the map to the normal form: 

: Corbt : : &b< : : f&bf :-I=,,, C+p(: H,&(I) :) 
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where =,,, indicates that the right and left side agree up 
to order m and I, H,,et(l) are action variables and pseu- 
dohamiltonian of the orbital motion. 

The full transformation : Cfull : reduces the full map to 
the normal form: 

: Cj”fJ : : Blur! : : CfUrl :-l=,,, 

ez.D(: Herb*(I) + nspin(I) . S3 :) (11) 

where R spin(l) is the spin tune. 
Omitting the details we note that the map (11) has the 

nondegenerate invariant function V = Ss. In the initial 
variables this function has the form V = : Cfurr :-l S3. 

VI. CONNECTION BETWEEN SO(3) 
AND SU(2) GROUPS AND ONE 

TURN MAP COMPUTATION 

The orthogonal 3 x 3 matrix A(Z) E SO(3) consists of 9 el- 
ements, but for its definition it is enough to have a smaller 
number of parameters. Usually this fact is used in the 
spinor formalism. A more classical approach is described 
in this paper. 

In correspondence to the vector s’ we set the matrix 

L= 
( 

s3 4 + is2 

Sl - is* -773 > 

and introduce the matrix B (B’ = -B): 

BZ;. 
( 

w3 w1+ iw2 

Wl -iw2 -w, > 

By means of the matrices L and B one can write the spin 
part of motion equations (1) in form of a Lax equation: 

dL 
-=B.L-L.B 
dr (12) 

If the matrix U(r) satisfies the equation 

dU 
- = B U, 
dr 

U(0) = I (13) 

then CT(r) E SU(2) and the solution of (12) for L(0) = Lo 
is given by the formula: 

L(r) = U(T)‘Lc, ‘U*(r) (14) 

Thus we only need to calculate the solution of equation 
(13) for one turn. This approach is advantageous because 
the calculation with help of SU(2) matrices requires a 
smaller number of arithmetic operations than with SO(3) 
matrices. 

VII. IMPLEMENTATION IN 
COMPUTER CODE VAHLIE 

All algorithms presented in this paper have been imple- 
mented up to arbitrary high order in the code V&LIE [6]. 

This code allows to obtain one turn Taylor maps for orbital 
and spin motion, the invariant functions for the orbital mo- 
tion, the equilibrium polarization direction and the orbital 
and spin tunes for the proton storage rings. This program 
is being created specially for computers like IBM PC with 
small memory (1 - 2 MB). 
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