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Abstract 

Future linear colliders will likely use sophisticated beam- 
based alignment and/or steering algorithms to control the 
growth of the beam emittance in the linac. In this paper, a 
mathematical framework is presented which simplifies the 
evaluation of the effectiveness of these algorithms. As an 
application, a quad alignment algorithm that uses beam data 
taken with the nominal linac optics, and with a scaled optics, 
is evaluated in terms of the dispersive emittance growth 
remaining after alignment. 

I. INTRODUCTION 

A major concern in the design of future linear colliders is 
the emittance growth in the linac. For example, dispersive and 
wakefield generated growth occurs when the beam travels off- 
axis as a result of misalignments of the quads, beam position 
monitors (BPMs) and accelerator structures. Steering and 
alignment algorithms have been devised to rcducc thcsc offsets 
and their effects [l-3]. The basic method of evaluating these 
algorithms is to simulate the linac beam transport including 
misalignments. and then to apply the correction scheme. This 
is repeated for many misalignment configurations to accurately 
gauge the effectiveness of the algorithm. 

Here we present an analytical approach that makes it 
much easier to explore the ‘parameter space’ of an algorithm 
by eliminating the need to do simulations. This approach is 
generally applicable in cases where the emiltance growth 
depends quadraticly on the misalignments. Some examples in 
which it can be easily applied are dispcrsivc growth where 
there is little filamentation, and wakefield growth where the 
orbit perturbations are smaller than the orbit offsets in the 
accelerator structures. 

A good way to describe the approach is to apply it to the 
problem of the dispersive emittance growth that results from 
misaligned quads and BPMs. We will fist define the problem, 
then formulate a quad alignment algorithm, and finally evalu- 
ate the growth from first order dispersion. Briefly, we exploit 
the fact that the computed misalignments are linearly related to 
the BPM measurements used in the fit. Since the emittance 
growth also depends linearly on the misalignments, the growth 
can be expressed in terms of the measurement errors. 

II. ALIGNMENT PROBLEM 

As a specific example, we treat the case of misalignments 
in a linac consisting of a FODO lattice with a BPM located in 
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the bore of each quad. We assume that a single bunch of 
constant mean energy and constant energy spread traverses the 
linac. We also assume a constant spacing, L, between quads, 
and a constant phase advance per FODO cell, p. These 
parameters define the periodic beta function: its maximum 
value is 

P max =& [l+sinW)]. 

We note that the emittance results derived with these 
assumptions can be simply related to the case of constant 
gradient acceleration with a $ scaling of beta. 

In computing the beam motion, we consider only the 
steering effect of the quad misalignments. The relation 
between the resulting beam trajectory and the BPM 
measurements is illustrated in Figure 1. Here, a quad is offset 
relative to an alignment axis by xq, and the BPM located in the 
quad is offset relative to the quad center by xb. Not 
represented in this figure is the BPM measurement error, 
which we denote by x,. Including this error, the BPM 
measurement, x,, is related IO the orbit offset, x, by 

x,=x-xq-xb+x,. (2) 
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Figure 1. Illustration of a quad offset, xqr BPM offset, xb, and 
BPM measurement x, for x, = 0. 

From this relation, one can see that correcting the orbit by 
zeroing the BPMs (using steering magnets for example) will 
result in an rms orbit offset at each quad that is the sum in 
quadrature of the rms BPM and quad offsets (assumed to be 
uncorrelated) and the BPM resolution. With this ‘One-to-One’ 
steering approach, the resulting dispersion is proportional Lo 
the rms orbit offset. In an actual linac, the largest of the three 
contributions is likely to be from the quad offsets, followed by 
the BPM offsets. Hence, in a beam-based approach 10 
reducing dispersion, it is reasonable to consider determining 
the quad offsets from the BPM data. The measurements from 
N contiguous BPMs can in fact bc used to fh for the offsets ol 
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the N quads starting at the quad upstream of the first BPM. 
These offsets would then be used to correct the orbit by either 
moving the quads (assumed here for simplicity), or by 
equivalent adjustments to steering magnets. 

One can also use BPM data taken with other lattice 
configurations to further reduce the quad offsets, or to allow 
for a fit for the BPM offsets as well. However, just 
minimizing the residual orbit offsets is not necessarily optimal 
for dispersion reduction since the correlations that arise 
between the offsets as a result of the fit affect how the 
dispersion source terms add. In fact, the results are often 
counterintuitive, making it all the more useful to have an 
analytic means of examining the problem. 

III. ALIGNMENT ALGORITHM 

To further our example, we next formulate a quad 
alignment algorithm based on two sets of BPM measurements, 
one taken with the nominal lattice and one taken with a 
uniform scaling of the quad strengths. This scaling, whose 
size we denote by Q/Q,,, changes the phase advance per cell 
while maintaining periodic focusing. (We note that other types 
of lattice scaling are also possible, and may be more efficient 
although less simple to implement.) 

As a first step, we need to define an alignment axis to 
which the trajectory offsets are referenced. In practice, one is 
likely to align a group of N quads at a time, one group 
immediately after the next, so a good choice for the alignment 
axis is the line formed between the beam position at the first 
quad in the group, and the center of the first quad in the next 
group (i.e., quad N+l). This leaves the initial angle of the 
beam unconstrained, so it must also be included as a variable 
in the fit. We assume, however, that it does not change 
between the two sets of measurements. 

As with any fitting procedure, we need to define a x2 in 
terms of the variables and measurements involved, accounting 
for the errors and their correlations. The errors in this problem 
are the BPM offsets relative to the quads and the BPM 
measurement error, each of which we assume to have a mean 
of zero and an rms width of 

a: -(x:) and 0: -(xt) (3) 

for each BPM. The resolution variable, x,, differs from mea- 
surement-to-measurement while the offset variable, xb, is 
common to all measurements. If we let ‘it,,, and %,,, be 
vectors representing the two sets of N+l BPMs measurements 
(i.e., the N BPMs at the quads being aligned plus the next 
downstream BPM, with superscript 1 (2) denoting the 
measurements with the nominal (scaled) lattice), then we can 
write the full measurement vector and the corresponding error 
matrix as I- %I L, - ~- [ 1 A-(X&) (4) 

XC? 

where the elements of A are obtained from equations 2 and 3: 

Ai4 = [of +oqq,, + 0; (%.,-N-l +%.,+N*l). (5) 
The final ingredient for the fit is the functional dependence 

of the measurements on the fit variables. From equation 2. we 
need only an expression for x since x,, and x, arc treated as 
random variables. At quad i, 

i-l 
x, = ‘W, 0, - c W,, K, xq., (6) ,=I 

and (for future reference), 

1-1 

x; = Rzz,,, 8, - c Rzz,,, Kj xq,, - + xq,, (7) 
,=I 

where R1ziJ (Rzz,,,) is the [1,2] ([2,2]) transport element 
between the center of quad j and i, K, is the integrated quad 
strength, 8, is the beam angle just upstream of the first quad, 
and xq,i is the offset of quad i (note ~s,~+, I 0). 

To simplify the algebra, we form a vector, K,, that is the 
difference of the BPM mcasurcmen& and the fit function: 

The expression for x2 is then 

x2 = n:, A-’ z, 

which when expanded yields 

where 
R=o,,/cr,. (11) 

In the R + 0 limit, where the BPMs are perfectly aligned, x2 
reduces to the sum of squares of the two measurements, while 
in the R + - limit, it reduces to the sum of the measurement 
differences squared. 

With this x2. we next solve the set of equations generated 
when setting its derivative with respect to the fit variables to 
zero. Skipping this algebra we note only that the resulting fit 
values are linearly related to the measurements. We express 
this bv 

x, E I FX, (12) 

where F is a matrix which depends on R and on the lattice 
parameters for the two measurements. 

IV. DISPERSION 

With the alignment equations, we now compute the beam 
emittance growth due to the first order dispersion remaining 
after the alignment process. To begin, we evaluate the 
dispersion at the center of quad N (quad N+l is not used since 
the beam angle at this location is not constrained in the fit: this 
angle is corrected, however, during the alignment of the next 
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Figure 2. Scaled dispersion amplitude, A’, as a function of R and Q/Q, for N = 40 and p = 90” 

The R --+ m limit is equivalent to fitting for the BPM offsets. 

group of N quads). Using equations 6 and 7, the normalized 
dispersion amplitude can be written 

%4 = E D8, (131 

where D is a matrix that depends on the parameters of the 
nominal lattice, and 6 is the fractional energy difference. To 
evaluate the emittance growth due to this dispersion, we 
average over the beam energy spread and over the quad 
alignment results. If E, is the emittance of the beam entering 
the alignment region and 0: is the rms beam energy spread, 
the rms of the emittance at quad N, E,, is 

F=(l + ~Tr[(r’lrlr)])l’z (14) 

where we ignore the effect of betatron chromaticity. Now we 
substitute the alignment results to compute the average: 

Tr [(vl*)]= Tr [(DX, % D’)] 05) 

=Tr[(DFR,R~F’D’)]=Tr[DFhF’D’]. 

For convenience, we define a scaled dispersion amplitude as 

Al I Pm TTr[DFAF’D’] (1’5) 

which depends only on p, R and N. The emittance is then 

(EzN)I/z _ , + o:c+ ,,* 1’2 
L 1 P (17) 

Eo maxE0 

From a practical point of view, one wants N to be large in 
order to reduce the dispersion from the uncorrected quad 
offsets at the ends of the steering sections, but not too large 
that systematic effects, such as from common errors in the 
quad strengths, are large. Based on experience with beam- 
based alignment in the SLC, a reasonable value is N = 40 for 
it = 90”. Figure 2 shows A2 for this choice, and various 
values of R, as function of Q/Q0 over the range in which the 
phase advance per cell is < 180’. 

For Q/Q0 = 1, where two sets of the nominal lattice data 
are used, AZ scales as 1+ 2R2 since the effect of the BPM 
offsets and measurement errors are indistinguishable in the fit. 
Outside of the Q/Q0 = 1 region, A2 saturates as R + - since 
the difference of the orbits from the two lattices is independent 
of the BPM offsets, and hence independent of R. This is true 
even though the orbit offsets after alignment still scale as R for 
R >> 1. Another interesting result is that if the BPM offsets are 
included as variablas in the fit, the dispersion is the same as 
the R + - case. Allowing the BPM offsets to vary apparently 
leaves the quad offsets sensitive to only the difference orbit. In 
this case, however, the orbit offsets after alignment arc 
independent of R (the error in determining the BPM offsets 1s 
about 1.3 a,, independent of N). Finally, we note that AZ is 
essentially linear with N at Q/Q0 = 1 and at values outside of 
the peak region. In the transition region, the widths of the 
peaks decrease as N increases. 

V. REFERENCES 

[l] C. Adolphsen et. al., SLAC-PUB-4902, (March 1989). 
[2] T.O. Raubenheimer and R. Ruth, Nucl. Instr. and Meth. 

A302, 191 (1991). 
[3] T.O. Raubenheimer, Nucl. Instr. and Meth. A306, 61 

(1991). 

419 

PAC 1993


