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Abstract where the relationship between .zi, zs is 

Zct = -zl - z2 [2]. 

The time dependence of the different enhancement factors 
The d.e.f. can be obtained from equation 

(2) in terms of 

of the luminosity, in the region of weak disruption, has 
cylindrical coordinates for (D = O)(subscript 

0) with the 

G auss’ 
been discussed here, for the first time, and the correspond- 

radial symmetrical bunchgeometry 

of the d.e.f. 

ing time integral has been explicitely discussed upon. For dffm 1 dfo c CT -=--=- 
the case of stronger disruption (transition region), the ex- dt { > 

-- 
Co dt Jiiui exp u2 

(3) 

isting numerical results from various research works, has F or i d’ff 
been checked analytically with the help of a square distri- 

erent logitudinal and radial bunch 

distribution, The 

bution. 
enhancement factor for weak disruption 

(D>O) is given by: 

1 Introduction 

In order to estimate the parameters [l] ..[7] of the future ac- 
celerators, especially t,he e+/e- linear colliders accelerator 
[8]..[11], the increment of luminosity, which results due to 
disruption, has to be given more consideration. In this pa- 
per, the t.ime dependence of the differential enhancement 
factor (d.e.f.) of a weak disruption D, ss well as that of 
a transition region, is discussed. For the weak disruption 
region the d.e.f. is expessed in terms of the Gauss’ error 
function. For the transition region, the numerous results 
available [2] are been checked analytically with the help of 
a square distribution. The numerical results [2, 9, 111 and 
our analytical solution are in very good agreement. 

2 Differential enhancement fac- 
tor in the case of weak disrup- 
tion 

’ 

long.hom 

75 
’ 

long.gauss 

7 

(4) 

and the disruption parameter is 

D= T,UZN hccu, 
-; 

wo 
T, = ---yj 

m0c 

(5) 

In addition to the above known results, a 

new d.e.f. is being 

introduced. 

dHD 1 dCo 2c2(2n)%,N 
dt =c,dtf -r 

vii(t) 

where 

(7) 

is the radial bunchgeometry and 

ii= 
+m 

(8) 

AS a result of the penetration of the electron in the positron J 
hnz(rl)n,(-z - 2ct) [g(t, a) + 

g(t, -2ct - q)] 

bunch, the respective charged particles do not move along 0 
straight but on curved paths. As it is known, this causes 
the pinch-effect, which then results into the increment of 

the longitudinal bunch geometry with respect 

to dHio/dt. 

the luminosity. Thus the behaviour of the d.e.f. 
The functions g in (8) are defined as 

dHD 1 dC -=-- 
dt Co dt 

can be defined with the aid of 

s c = f 

= fN2 

(1) g/t,4j)=~~d~m,(r+ir) ~~~~~~~ 

(9) 

0 

The equation (G) can be further formulated 

for the longi- 

tudinal Gauss’ distribution: 

I 2 

t-202 I > 
(10) 

J 1 
nl(z, y, tl, t)nz(+, y, i2, t)dzdydzldzz (2) ~(2) = ---T--- exP 

(2*)sa, 
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as follows 

ii(l) = 
+a0 

zx 
J 

dm(r1)4& x 
--co 

[ 

+m 

x 
J 

drr{n*(T+Z2)+n,(r+il)} 
0 1 +m 

1 
= 

G J 
dzlnz(z,)n,(-2ct - q) x 

-co 
+‘W 

x 
J 

dr r{nz(~+(-2ct)- z~)+nz(r+r~)} 
0 I 

+oO 
1 1 

= G [27r$G6,] -m I 
dzle-&-qp x 

_ (1-15,-s*)” +* 
l-: + e ==z (11) 

After various substitutions and numerous mathematical 
steps (not discussed here) the following equation results 

= 2 i-- 2*4 1 

I 

c(t) 

-7 JG (27rJ2;;u*)3e 

x 1 x&y 

2 
;*:qfl::(&);; 

From this equation a new expression for dHo/dt can be 
dreived: 

dHD -= 
dt (13) 

-cat= 
xe -7 

[ 
e -e+g+rf(gJ}] 

= ke 
-9 + $cr+/~ x 

2s y 2 
-c=*= 

xe --q- +- 
[ 

-“.‘+~{l-erJ(g-)}] 

3 Analytical results for the tran- 
sition region 

The characteristics of trajectories and those of the density 
distribution (under the aspect of longitudinal Gauss’ dis- 
tribution), in case of larger disruption parameter 

(1 5 D < 10) can be obtained only numerically. The nu- 
merical results mentioned above shall now be proven with 
the aid of equivalent longitudinal square distribution. The 
general differential equation [9, 11, 121 for a radial motion 
is 

p(t) 

i’(t) = --fl-(-4nhm,N)& 1 dr’ r*n(t,r*, z) 
c2m0y 

04) 
0 

Considering only the paraxial beams, the Taylor’s series 
can be written as: 

i(l) = - 
47rc2Nr, 1 

Y 
y(L 0, z)r(t) (15) 

for which the information regarding the density distribu- 
tion along the beam axis (r = 0) [2, 9, 11, 121 is necessary. 
This can be expressed as 

n(t, 0, z) = (16) 

1 e-w 4rc2Nr: 

( 2n)3hT, 4 1+ 74 g(t, 21) 1 
(15) and (16) lead to the numerical and analytical solutions 
mentioned in the references [2]. 
(i) The slope on the focal point (in equation (16) in a first 
approxiation only the first term ” 1” is considered): 

(17) 

(ii) The focal point t0 within the limits D E [l, lo] is 

(18) 

In the differential equation (15) the longitudinal Gauss’ 
distribution 

n,(t) = --- 1 1 1 2 
2x ?/% u* exp ( > 

-- 
262 (19) 

is substituted by the area1 equivalent quadratic distribu- 
tion 

n,(z) = p zI ( 
; 12.1 5 i 

‘2 
(20) 

Neglecting the second term in (16) the differential equation 

(15) 

d%-(f) xa cs D ---zs=,= 
_ = ----e 7 .r(i, 

dt Sx%.&af 
(21) 

turns into 4 

d%(i) zK c2 D --k=l= 
_ = --..---.-e 

dt alrJZ;;u,2 
-7-- ‘l-(i) (22) 
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where 22 = -2ct - z1 = 2X From equation (22) we obtain References 
for It 1 5 L/4c a simple differential equation with harmonic 
solutions [l] Kauru Yokoya, KEK-Report 85-9, October 1989 

r(i) = A,,, sin(Wi) + E,,, cos( Wi) [2] Pisin Chen, Kooru Yokoya, SLAC-Pub 439, August 

f(i) = A,Wcos(Wi) - B,Wsin(W~) (23) 
1988 

w2 := -2&D 1 
&I ;14r,‘, [3] Kauru Yokoya, KEK-Report 85-53, October 1985 

6, 0 ; else 
141 Karl Berkelmann, CLIC-Note 154, February 1992 

The solutions have to be differentiable and must be 
matched to the the general solution for Ii] 2 L/4c [5] A. Hofmann, CERN LEP-Dt/89-55, April 1989 

r(i)=A,+Br.i=l+O.i ,r$j=o [6] 0. Napoly, P. Sievers, T. Taylor, B. Zotter, CERN 

r(i) = AR + BR i , f(i) = BR (24) Saclay 

Due to the above condition, and r(t,) = 0 the focal point 
[7] 0. Napoly, B. Zotter, CLIC Note 129, October 1990 

can be written as [8] W. Schnell, CLIC Note 151 December 1991 

1 
tan(Wto) = tan (W$) (25) [9] Pisin Chen, SLAG Pub., 4823, August 1987 

and the slope r(tc) as 
[lo] T. Berklow, P. Chen, W. Kozonecki, SLAC Pub. 5718, 

September 

+(i0) = -W sin IV& 

I( ) 

tara (WA) 

Jtm+ 

+cos WL 
( 1 

1 

4c tan2 (WA) + 1 1 
Hence the final relation can be given as: 

c J;? -- i(ij=-w=-m u, 

[ll] P. Chen, SLAC Pub. 5615, July 1989 

[12] H. Heydari, unpublished Habilitation, TU-Berlin 

(26) 

This matches amazingly with the numerical results already 
mentioned above. 

3 
= 0,75983 e - 

4 

The equation (26) can lead to a corresponding result for 
the region (3; 6,6}, after various series expansions as 

(29) 

4 Conclusion 

For the different bunch geometries of the d.e.f in the weak 
focussing region a time dependency has been established 
and relation has been derived. Besides, the various re- 
sults from different references have been evaluated. For 
the transition region an extremely good match has been 
obtained between the numerical methods achieved from 
a series complex mathematical operations and the results 
quoted. This was possible due to the substitution of longi- 
tudinal Gauss’ distribution through an equivalent square 
distribution. This simplified the differential equation upon 
which the analytical methods could be easily applied. 
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