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Abstract 

A scheme for the superslow extraction of protons from the 
SSC rings for high energy test beam or precision fixed-target B 
physics is currently being investigated.I The flux onto the 
extraction septum (a curved Si crystal) is to be generated by 
diffusion produced by noise injected into the RF system. The 
extraction rate depends on both the diffusion of the closed 
orbit (due to dispersion at the crystal) and the horizontal 
bet&on amplitude of the diffusing protons. The diffusion of 
the closed orbit has previously been described by the one- 
dimension longitudinal diffusion theory of Dome and Krinsky 
and Wang. In this paper, we extend this theory to include the 
effect of the betatron motion. Comparisons with Monte Carlo 
tracking simulations are made. 

I. INTRODUCTION 
It has long been understood that noise in the RF system of a 

hadron storage ring leads to a slow loss of particles from the 
circulating beam bunches. * It has become of considerable 
interest to exploit this to create an artificial halo for the 
purpose of extracting a low intensity beam for precision fixed 
target experiments or test beams at future hadron colliders.2*3 
A theoretical treatment of the loss process by a diffusion of the 
longitudinal action have been used for some bum-6 and do 
give results which qualitatively describe the observations. 
These theories have been strictly one-dimensional , taking no 
account of the betatron motion. Losses are assumed to occur at 
the separatrix of the longitudinal motion, In actuality, losses 
occur at a physical aperture stop. This might correspond to an 
extraction septum in the case of interest to us or, more 
generally, at any momentum scraper. Indeed, our recent 
results6 on diffusion in the presence of filtered noise suggest a 
scheme for scraping momentum tails, We have conducted 
Monte Carlo tracking studies in the SSC lattice9 

The betatron function can be large and the loss rates change 
significantly when the effect of the betatron motion is 
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included. Recently, we have obtained a theory of the diffusion 
process which includes the effect of the betatron motion7 
Agreement between the particle losses in the simulation and 
the theory is excellent. In this paper, WC briefly describe the 
theory and present new results on the “marginal” density in 
longitudinal action. These are also compared with the Monte 
Carlo tracking results and again the results agree. 

II. DIFFUSION THEORY 
The theory”-” of longitudiual dynamics in a noisy RF 

system leads to a description of the evolution of an ensemble 
by a diffusion in the action, J, which is a constant of the 
unperturbed motion. The time scales of the diffusion in action, 
the synchrotron period and the betatron oscillation period are 
disparate with td >> fs >> tp. Thus the collimation process 
sweeps a shell in the transverse phase space (A, A+dA), where 
A characterizes a Courant-Snyder invariant, and a shell (J, 
J+dl) in the longitudinal phase space in a time t , ts<t<td. The 
maximum betatron displacement is related to A by 
InsI,,, = @A where p is the usual betatron function. 

In the presence of an aperture stop, a particle slowly 
diffuses toward the periphery of the beam pipe until it strikes 
the stop. We assume the “image” of the stop in momentum, 
x,/D, is inside the bucket. Here D is the dispersion at the 
position of the stop. The time it takes until the particle is lost, 
or conversely, the loss rate, depends on both the closed orbit 
position (equivalently, action) and the betatron displacement. 

If we had the joint probability density of J andxlj we 
would have all the information needed. (Here and throughout 
the remainder of the paper for ease of notation we have written 
xp when we really mean Ixslm,.) By definition, the joint 
density can be obtained from the probability conditioned on 
xp, P(Jllp) : 

p(J,na) = P(JLQ )P(Xp) (1) 

where p(.~) is the marginal density of xp. These must be 
probability densities and must be defined throughout the 
domain of definition of the pair of random variables J, xp 
which is the quadrant J > 0, xp 2 0. 

Consider particles which, at a given time, t, have not yet 
reached the stop. These lie in a domain in the space of the 
random variables bounded by the coordinate axes and a 
curve J,(xp) which is the action for a particle on an energy 
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surface k defined by kb(,xB) = (I, - xP) / DSp,where 
k = Sp / Sp,, Sp the momentum deviation and 6p, the bucket 
half-height. For these particles, the conditional density satisfies 
a diffusion equation of the form considered in earlier work4”: 

+,t,xa)=$ Dw$P(l,rlx,) L 1 (2a) 

but with boundary condition: 
p(.lb,t k/$=0. (2b) 

For these particles, the marginal density in xP is just the initial 
distribution. 

In the remainder of the domain of the random variables, the 
conditional density is a d-function. It is fixed by the 
requirement that p(x,) be a marginal density; that is, an 
integral over all J >O of the joint density. 

In general, the diffusion equation must be solved 
numerically. However, analytic solutions have been obtained 
for diffusion coefficient linear in the action and quadratic in 
the action. In the former, straightforward separation of 
variables gives a solution4 as a Fourier-Bessel series. In the 
latter, a Fourier integral representation exists.* While neither 
of these exactly correspond to simple noise spectral densities, 
the diffusion coefficient for small action is linear in the case of 
white phase noise and quadratic for white amplitude noise.6 
Furthermore, we find the diffusion coefficient for white phase 
and for white amplitude noise reasonably can be fit over most 
of the bucket by linear and quadratic approximations 
respectively; the tit is very good in the latter case. This is 
illustrated in Fig. 1 where we have shown the diffusion 
coefficient in the cases of white phase and amplitude noise 
along with their approximations. The action is normalized to 
its value at the boundary Jb for a zero betatron amplitude 
particle. We will now present results obtained from these 
solutions by use of Eq. (1) and which can be compared to data 
we obtain from our Monte Carlo simulations. 

III. THEORETICAL RESULTS 
There are several quantities which typically are of interest 

when we consider the results of a Monte Carlo extraction 
simulation.2*6 Of these, the number of particles reaching the 
septum at a given time and the distribution in action of the 
circulating particles are calculable from the diffusion theory. 
(Other data, such as the initial phase-space coordinates of the 
particles striking the septum and the distribution of hits on the 
septum are outside of the scope of a diffusion theory.) In this 
section, we compare the results of the diffusion theory with the 
Monte Carlo data. 

The number of particles which have hit the septum up to a 
time, t, is found by integrating the joint density, Eq. (1) over 
the region of the random variable space, S, occupied by the 
circulating particles and applying conservation of probability: 

I = 1.-JJp(J,tln,)~(.r~)dJdx, (3) 
s 

Explicit expressions have been given in Ref. 7. Here we 
summarize the results7 for both white phase and white 
amplitude noise in Table 1. A typical Monte Carlo simulation 
follows 1000 tracks for about a million turns or about 
5 minutes in real time. Obviously, the simulation extraction 
rates are substantially higher than would be employed in actual 
operation but computational constraints necessitate this. This 
underscores the importance of a theory which allows us to 
predict the behavior of the extraction process with realistic 
operating parameters 
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Figure 1. Diffusion coefficients for white noise. 

Referring to the table, the first figure in the column of 
theoretical values is the result using the extrapolated small 
amplitude diffusion coefficient and the second value was 
obtained by using the diffusion coefficient tit by forcing the 
value of the monomial (linear or quadratic as appropriate) 
approximation to agree with the actual value at .Jb (0). The 
simulation results are from a single realization of the random 
process. The machine parameters are the nominal values for 
the SSC collider rings, asp = 5 x 10P5, &x = 1 rc mm-mrad. 
The value of /3r at the aperture stop was 1385 m in all cases 
but one. The exceptional case is indicated. The dispersion 
D = 4 m. For both simulation and theory, thirty-one transient 
particles have been taken into account. These are particles 
which are initialized outside the septum and consequently are 
lost in a few turns independent of the noise. The agreement 
between the simulation and theory is generally very good 
particularly for the monomial fits. 

The distribution in action of circulating particles is given 
by: 

XflV) 
p(J,t)= Jp(J,x;,tkix; , 

0 
(43) 

where xa (J) is defined by 
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.I&)= J. (4b) 

We simply refer to this as the “marginal” distribution in 
action but, technically, this is incorrect. It is actually the joint 
probability of having the “action in an interval dJ about S’ and 
the particle being “inside the aperture”. 

Table 1 
Values of N. Theory values as described in text. 

Phase Noise Amplitude Noise 

O@ N (sim) N (theory) oa N (sim) N (theory) 

0.2 584 7321595 0.5 745 77217 18 
0.2’ 343 5421363 0.2 182 211/178 
0.1 187 2611179 0.1 67 56148 
0.05 51 69149 0.05 22 19/17 
0.02 13 1804 0.02 7 716 
*p,r =346m 

We have calculated p(J,t) for both phnse and ‘amplitude 
noise. The integral is done numerically using a standard 
Romberg routine on a personal computer. The results are 
shown in Fig. 2a and Fig. 2b for white phase noise and white 
amplitude noise respectively. The solid curves are for the 
diffusion coefficient given by the fit while the result using 
small amplitude extrapolated diffusion coefficient is the 
dashed curve. These are superimposed on the histogram from 
the Monte Carlo tracking. The phase noise corresponds to a an 
rms phase cr+ = 0.1 rad. The rms relative amplitude noise 
modulation a, = 0.2. In the Monte Carlo results, bar heights 
of approximately 1. x low3 correspond to single particles, The 
agreement is seen to be quite good. Insofar as the marginal 
densities are concerned, the differences between the result 
using the small amplitude extrapolation or the fit for the 
diffusion coefficient is small. 

IV. CONCLUSION 
We have described a theory of the noise induced diffusion 

in the longitudinal phase space which accounts for the effect of 
the betatron motion. The two degrees-of-freedom are coupled 
at a position with dispersion by any real stop. The problem of 
interest contemplates noise deliberately introduced into the RF 
system for superslow extraction of low intensity proton beams. 
The agreement with Monte Carlo tracking simulations is 
excellent. The theory could also be applied to momentum 
scrapers, when the momentum halo production can be 
described by a diffusive process. The formalism should also 
apply when the marginal density in xp has time dependence 
provided the evolution is independent of .J. 
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Figure 2. Marginal action density distributions: a) phase noise, 
04 = 0.1 rad b) amplitude noise, 0,=0.2. 
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