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Abstract 
The relativistic equations of axial motion of a 

charged particle in an RF electric field inside a gap are 
analysed.The solution to these equations can be expressed as 
the incomplete elliptic integrals of the first and third kinds. 
The approximate solutions based on the average particle 
velocity in the gap are also found. The bunching by a gap is 
analysed by considering the phase +e after the drift as a 
function of the entrance phase Qi: $c=$ii-$t+od, $t is the 
transit angle in the gap, $d drift angle. Starting from the 
general condition for bunching d$e/dQi 5 1 it is shown that 
bunching begins with the input phase &pm corresponding to 
the minimum of the momentum pm at the exit of the gap and 
ends at phase @ipM when the momentum attains its maximum 
pM. The width of the bunched phases A@e is analysed as a 
function of different parameters and can be optimized 
according to the imposed condilions. 

I. INTRODUCTION 

Bunching is the basis of many microwave devices in 
which the interaction between the beam of particles and an 
electromagnetic wave plays an essential role as for instance in 
klystrons or linear accelerators. Consequently the problem of 
hunching was analysed by many authors [l-3]. IJsually this 
analysis is based on some simplifying assumptions. The most 
important arc: i) The transit time of a particle through the inte- 
raction gap is negligible in comparison with the field period. 
ii) The AC voltage Vg in a gap is small in comp‘arison with 
the DC voltage Vo. iii) Space charge effects are ignored. 

In the present paper the analysis will be made 
without the first two of above restrictions. To take properly 
into account these effects the relativistic equations of motion 
of particles in a gap are solvedSpatially constant field in a 
gap is assumed, since then the analytical solutions are 
possible. However, as it was shown by numerical calculations 
[ 3 1, the results for other field distributions e.g. gaussian are 
similar. The analysis is made for electrons, but the results can 
be used also for other ch‘arged particles. 

II. AXIAL MOTION IN A GAP 

A. Equations of Marion 
Equations of motion are 

dylds = A co@ (1) 

dQ/ds = 2 n r/( y2 - 1 )l’2 (2) 

where, y is the relativistic energy factor, s = z/h, z-axial 
distance, h- wave-Iengti, I$- electric field phase in a gap, A = 

qhE/Wo, q-charge, E- electric field intensity, W. =moc2- 
particle rest energy. 

In the case of E = const. an analytical solution to Eqs 
(1) and (2) can be found. First by elimination of ds we find 
equation for the normalized momentum p=mv&c=Lp, @v/c) 

p = po + Al ( sin@ - sin$o ) = fl (3) 

Here subscript o denotes the initial values. Eq. (3) defines the 
phase trajectories in the phase space (p,$), however, it does 
not give the dependences y = y(s) and Q = Q(s). To obtain 
these relations using Eq.(3) we express y and cosg as 
functions of momentum p. Inserting these relations into Eq. 
(1) and integrating we get 

1 p s= +- 
I 

pdp (4) 

2npo&+ P*W,* -(P--P, + 4 sin$,)2) 

The integral (4) can be expressed in terms of the incomplete 
elliptic integrals of the first and third order [3]. Since the 
expressions with these integrals are rather complicated, for 
numerical calculations it could be preferable to integrate 
directly Eqs. (1) and (2) or (4). However, it would be more 
effective if one could solve analytically, even approximately, 
Eqs (1,2) without the necessity to calculate the integral (4). 

B. Approximate Solutions to the Equations 

The phase + as seen by a particle can be written as $ 
= q. + $t (+ where q. is the initial phase and $t(s) is the 
transit phase given by 

$t(s) = 2 n: p = 
2n(s-s,) 

snm P,, 
(5) 

P av is the average pa&e velocity in the gap as defined by 
(5). To find Pav we will average the F$. (3) for p over the 
changes of phase G$o,OO + h(s)) 

Pav = po +Al((sin$)av - sin$o )= I/( l/pav2-1)1’2 (6) 

4,++, 

$t$av=l/~t jsin @de = (cosc$o - cos(~o +$t)/$t (7) 

Inserting (7) into).(6) we will get equation for Pav 

PO - (l/(Pav)2 - 1)-*‘2 = 
(8) 

A i(sin00 -(COS$O - cos(O~+@dV$d 

In the case of small changes of the velocity in a gap Ap/p<<l 
equation (8) can be reduced to quadratic equation for the small 
quantity proportional to Ap/p. To obtain this equation we put 
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x0 = 1/po, x = l/Pa” = xo(l + y), $t =27&x = $to(l +y), 
Qto = 2~~x0 is the transit angle of the particle with the input 
velocity po. Assuming that y << 1, valid surely for small 
signal bunching, we can expand functions of Eq.(8) into series 
up to the second order in y in the vicinity of x0 to obtain 
quadratic eqution for y with the aid of which Pav is found, 

III. BUNCHING 

A. Central Particle 

In the process of bunching by tbe velocity 
modulation a special role plays the central particle. Usually 
this is the particle which passes an interaction gap without the 
change of energy. We should then find such a phase Q. for 
which a particle leaves the gap without changing its 
momentum po. Using Eq. (3) we obk%n the obvious relation 

sinQoc = sin( qoc +$lc ) = sin( $ - Qoc ) (9) 
‘and 

Qoc = ( k + l/2 ) n - 0.5 Qlc (10) 

where $tc is the transit angle of the central particle. Assuming 
that (SC < K (narrow gap not to large signals) we will have for 
electrons k = 0 and Qoc = (TC - @tc )/2. 

The precise solution for Qoc can be now obtained 
wirh the aid of Eq. (4) where the limits of the integral should 
be (pmin,po) and pmin is given by (for elecuons Al < 0 ) 

Pmin = PO + Al( 1 - sinQ0 ) (11) 

The approximate solutions can be obtained from F,q. (8) inser- 
ting , according 10 Eq. (lo), $0 = Qoc = (R - $tc )/2 to get 

po - (x2 - 1)-lj2 + Al (sinala - cosa ) (12) 

where x = l/fiav. a = $k-/2 = x s x 

Taking into acount (13) and (14) Eq. (15) becomes 

dQe/d@ = 1 - F/(p2(I + p2) 1’2)dp/d& I 1 (16) 

We begin with some general conditions for bunching, 
which can be obtained from the relation (16). Generally, since 
F > 0 then the condition (16) requires that dp/d$i 2 0. It 
means that bunching starts with phase $i = $ipm 
corresponding to pmin at the exit and ends with the phase 
@ipM for which ppmax. The range of bunched input phases 
is 

A@i = 4ipM - Qipm (17) 

Then to define the starting conditions for bunching we should 
find the extrema of the momentum p as a function of $i. For 
A$e we should find extrema of $e using the equation d$e/d& 
= 0 Generally, depending upon the parameter F and 
momentum p. this equation can have 0, 1 or two solutions. In 
the case of 0 or one solution we have 0 I dQe/d$i I 1. The 
bunched output phase $e is a monotonic function of the input 
phase Qi. Aoe is equal to A$e = QepM - $epm, where $epM 
and +epm are the output phases after tbe drift corresponding to 
pmax and pmin at the exit of the gap. 

In the case of two solutions we have four 
characteristic points on the curve $e = +e($i) on which 
depends the width AQe, The bunching starts with p = pm and 
Qi = @ipm. For Qi > Qipm dp/dQi > 0 ad d@e/dQi> 0 UP to 
the point where d@e/d@i = 0 and Qe = $eM. Beyond this 
point dpldqi > 0 but d4e/d$i < 0 until the point where 
d@e/doi = 0 and $e = @em is reached. After that Qe begins to 
increase again and bunching stops when dp/d$i = 0, p = pM 
and $e = l$epM. The width AQe is equal now 

A9e = max ( $eM&epM ) - min ($em&epm) (18) 

Further analysis will be possible when the extrema of the 
momentum p and the extrema of @e are found. 

B. General Relations for Bunching C. Extrema of the Momentum P 

In the c&se of a bunching system composed of a gap At the end of the gap tbe momentum p is given by 
of length L and a drift D, the exit angle is given by 

P = PO + AI (sin($i + 4t I- 9i ) (19) 
@e = @i + @t +@d = @i + F/P (13) 

It can be shown that dp/d& is equal to 
where oi -input phase. Qt = 2 s L/(X Pa,,) is the transit angle 
in die gap, $d = 27tDl(h 0 ) is the drift transit angle and p is dp/d& = P* mA1 (COS(4i + @r > - COS 9; > (20) 

the exit velocity. Putting Pav = hfi , where h is usually close P”$? + A,gcos(@i + @,> 
to 1, F is equal to Here g = 2 IC L/(h h ). Then from dp/d& = 0 follows 

F = 2 x D/1\ ( 1 + L/hD ) 

General condition for bunching is 

d&/d@ 5 1 

(14) 

(15) 

COS( Qi + $1) - COS$i = 0 (21) 

Eq. (21) has two principal solution in the range ( -x, R ) 
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$i = - a, pexu = p. + 2 Al sina 
(22) 

$i = X - a, pextr = po - 2 Al sina 

where a = @t/2. For electrons Al < 0 and the first solution 
is for pmln tbe second for pmax.The range of bunched input 
phases is 

A$i = @lpM - $ipm = 7~ + oipm - aipM (23) 

Since aipm > aipM then A+ > K. Usually for small signal 
bunching p. >> 2 Al, the difference between pM and pm is 
small so that A@ is close to n. For large signal, when Al can 
be comparable with po A& can substatially differ from x. To 
solve completely the problem we should find the transit angles 
$ttpm and $tpM. The precise solution can be obtained with the 
aid of equation (4). Approximate solution is obtained 
inserting relations (22) and (23) into (8) to get the equation 
for x = I/Bav 

po - ( x2 - 1)-1’2 + Al sinrcsx = 0 (24) 

D. Extreme of the Bunched Output Phase Oe 

The extrema of $c are given by d$e/d@ = 0. Using 
(16) and (20) we get 

(25) 
p2(1 + p2)“2-(2nD/h)Al(cos(@i + $t)-(1 + L/hD)cosQi) =O 

In this equation the transit angle $t is a function of Qi so that 
in principle it is an equation for @i. However, since we do not 
know explicitely the functional dependence Qt = f($l), we 
should use some iterative procedure to solve Eq. (25). For a 
given value of oi, Qt can be found either precisely with the aid 
of Eq. (4) or approximately using equation (8). Usually for 
small signal bunching the simpler approximate solution is 
sufficiently accurate. Generally, as it was already mentioned 
above Fq. (25) can have 0. 1, or 2 solution for @i in the range 
(-R , x) The number of solutions depends on the parameters 
of the bunching system: Vo, Vb, D, L and h. Solution of Eq. 
(25) defines the type of bunching and AQe. This, together 
with previously found quantities : AQi, pmin, pmax delines 
completely the bunching system giving not only the 
effectiveness of phase hunching A$i/A@e, but also the energy 
dispersion introduced by the system Ap = pmax - pmin. 

Up to now we used a general definition of the 
bunching factor R = AQi/A$e with A@ and A$e defined by 
Eqs (17) and (1R) correspondingly. However, in practice e.g. 
for positron production or injection into superconducting 
cavities, where both small phase and energy dispersion is 
essential, we often would like to have rather narrow well 
bunched output phases. It means that in the vicinity of tbe 
central particle the changes of @e should be small for 
sufficiently large variations of Qi. This can be done by 
choosing the bunching parameter in such a way as to have two 
extrema of Qe close to each other, since then d$e/d@i = 0, 
variations of $e are small and given by 

$e = $ee + 0.5 (@i -Qie j2 d2$e/dQi2 (26) 

where $ee corresponds to the extremum of $e and +ie the 
value of $i in this point. We can now define the effective 
value of bunching as 

Reff = (@iM - @im)/($eM-@em) (2-J) 

where ‘$eM and @em are the extrema of $e , $iM and $im are 
the values of the input phase $i corresponding to the points in 
which $e is equal to @em and @eM, outside the points of 
extrema of $e. Tb,. ie values can be found from Eq. (26) . The 
second derivative d2$e/dQi2 is found by differetiating once 
again Eq. (16) 

C. Numerical Example 

The program GAPAC (GAP Acceleration) has been 
written to make the numericd calculations and to check the 
validity of approximations. As an example we have chosen the 
prebuncher made for the SC accelerator LISA of Frascati 
Laboratories.The main parameters of this prebuncher are: V. = 
100 kV, h = 0.6m, gap length L = 0.1 h = O.O6m, drift 
length D = 1.36m. gap RF voltage Vg = 1OkV. Two kinds of 
calculations have been made. First the value of classical 
bunching parameter BP0 = D Vg rrJ(Vo h PO )was found for 
which R = A$ilAQe is maximum. AQi and A$e are given by 
Eqs. (17) and (18) correspondingly. The calculation has 
shown that the maximum is RM = 7 and is obtained for BP0 
= 1.81. In fact these values seems to be common for small 
signal bunching. In the second case we were looking for the 
solution giving A$i greater than 60 degrees and A$re of the 
order of one degree. The solution chosen was Bpo =1.45, A& 
= 82”, A$e = $eM - @em = 1.2” and R&f = 70.5. 
Theoretically them was no problem to get Re@$ an order of 
magnitude larger e.g. A@ = 45” and A+e = 0.1”. 

In both cases the difference between the precise and 
approximate solutions was below 1%. Only in the case when 
the extrema of $e were very close to each other the precise 
solution of Eq. (25) was necessary. 
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