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Abstract

Effects of plane undulator sine-lake fields on beam
dvnamics in Storage Rings are invesugated. Expressions for
tune shifts of betatron oscillations versus their amplitudes are
obtained for the case. where the orbit curvature inside the
undulator is rather large. It takes place in compact
synchrotron light sources with undulator insertions. [n the
limiting case these expressions for small orbit deflections arc
coincident with the known relations. Discussion of the results
obtained is presented.

[ INTRODUCTION

Previously {1]. we have considered the nonlinear eifects
of a planc undulator, and have derived the expressions for
lincar and nonlinear vertical tune shifts. Those resuits were
bascd on using the expressions for the tune shift caused by the
frigning ficlds of the dipole magnet [2]. where the vertical
ficld component was described by & sine curve. The problem

was solved to the SIN @ = approximation ( ¢x is the angle
of particle deflection in the undulator ficld). this being quite
sufficicnt in the majority of case. However. validity of this
approximation has not been investigated for the storage rings
of relatively low energies (about several hundred MeV)
comprising inserts (undulators and wigglers). The aim of this
report is to analyze the effect of plane- insert ficlds on beam
dynamics for significant orbit distortions within these inserts.

II. THE FIELD IN THE FIXED COORDINATE
SYSTEM

The ficld in a fixed coordinate svstem we investigate the
plane undulator with paralle! poles | infinitcly extended in the
transverse (horizontal) direction (figure 1).

The magnetic ficld components of this undulator are
written in the known form (e.g . {3]):

B, = Bysinh(k,z)sin(k,s).
B, =0:..
B, = Bycosh(k,z)cos(k,s).

where ku = A/2 is the undulator parameter, A
being is period.

This field can be descnbed by one component of the
magnetic vector potential:

N

A, = —icosh(ku:) sin(k,,s).

(2)
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Figure 1. A schematic model for cakculations.

I THE FIELD IN THE NATURAL COORDINATE
SYSTEM

To analyze the motion in the vicinity of the equilibrium
orbit. we shall go over to the natural coordinate system

(G, X,Z) . the origin of which moves along the trajectory

1
X =-——cos(k,s),
W
/2 1s the trajectory curvature radius, which is dependent

3)

on the effective tength of the pole. the field in the gap and the
particle cnergy.

Taking into consideration the infinite extension of poles
in the transverse direction, we may go over to the s',x',:'

coordinate frame, which moves along the § axis but is turned
by an angle

a(s) = —arctan %sin(kus)
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in reference to the fixed system. in terms on which the
expressions for fields (1),(2) are written. Proceeding from the

expression for the increment /O over the length ¢S,

]
do= dS‘\/k SlIl (k S)+1 the irajectory
14
2xtension is written as:
2L, p
dg)———-1+pr (4)

T
Vi+po
where L” 15 the undulator length;
=A4/2 0.

E(k) is the second-kind complete elliptic integral

Using  cxpression {4 for the tune shift
ln
] cH
V.= Vog = — st d;g .where azl and Z are
27 0 4(7:'

related by iaziz = :2 (tV'!z - Vg ) and averaging

the Hamiltonian over the whole perimeter of the setup, we
obtain the following expression for the tune shift

o= v B -k

2(1—1)IV‘21k21—1
A

T

(7
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The magnetic vector potential components A are
written in the §'. X', 2’ syslem as:
where K = L‘_
2 v+ p?
4 Bf.) 14 P
* k, ¢ \/1 + P: sin- (k,s) K (k) is tte first-kind complete clliptic integral;
‘V| is the modules of the Floquet function averaged over
the undulator length.
B2 I It should be noted that at 2—> 0 the term in square
Ae = BIS cosh(#,z)sin(k,s) 2 il kets —> /4 d paﬁ bstituti f
" \[1 +p° Sm-(kusyrac ets . an er  substitution o
2
W|"=pB. /2R, where f3, is the vertical amplitude
function. we obtain from (7) the expression for tune shifis
A,.=0 (5). givenin{1]:
-linear shift
IV. ANALYSIS OF THE MOTION
. ]‘uﬂz
In the natural cocrdinate svstem cmploved. the V.= V., = — 4 (8a)
longitudinal momentum of the panticle is well in excess of the 873}0”
transverse momentum and this allow us to use the meithods of aonlinear shift
the perturbation theory. It is known|4], that the siabilizing
part of the perturbation Hamiltonian leading to the tune shift b
has the form JZ'LM CIZ| ﬂg
V, = v, = st (8b)

2
iy AgR
st ’
Bp
where [{ is average radius of the machine;
=5/ R is the azimutal angle;

(6)

Bp is the particle magnetic rigidity.
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For practical applications. 1t appears more convenient to
use in cxpression (8b) the betatron oscillation amplitude

*

a, ,Bz . (where £ is the vertical beam emittance)
2 *2
which is related to ‘az A Ta, R/Zﬂz, If we
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restrict ourselves to the first two terms of the series expansion

in k E(k) and K(/{) . then the expressien for the tune
shift, which are suitable for their practical use. take the form:
-linear shift

Lplz+3p2 Bk,
V.-V, = ] = 5 ; (9a)
167fp\f1+p‘(1+p )
-nonlinear shift
2 2) %23
L“‘U(Z‘*'JP )a, ﬂzku
V.=V, 2 (9b)

o T ) :

1287041+ p*(1+ p?)

The tune shift duc to the trajectory extension in the
undulator (sce expression {4)) is given by

2

L1+ p? I—Klﬁ—plj -1
Vv Vyo - 271',3
v
(10)
where y=x,z.
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V. CONCLUSIONS

We have derived here the expressions for the tune shift
caused by the fields of a plane undulator (wiggler) in the case
of a significant orbit distortion. Numerical estimates show
that in most cases. in practice, it suffices to use expression (8)
because even in the consideration of the effects of caused
superconducting inserts in compact storage rings the
difference between the results obtained by the use of
expressions (8) and (9) is not greated than 10...15%. Yel. the
effects by themselves arc rather sigmficant and their
compensation by means of for example, magnetic-lens
svstems is a serious problem.
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