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II. APF BEAM DYNAMICS 

We have previously developed a model of alternating-phase 
focusing (APF) applicable to ion linacs comprised of short 
independently controlled cavities. The main beam dynam- 
ical aspects of APF are adequately described by four pa- 
rameters: equilibrium synchronous phase, phase modula- 
tion amplitude, length of APF period, and incremental 
energy gain. In this paper we report on an extension of 
the analysis to include simultaneous modulation of the ac- 
celerating field amplitude. Two additional parameters are 
included: relative phase between the amplitude and phase 
modulation and magnitude of the amplitude modulation. 
The effects of amplitude modulation on the stable regions 
and longitudinal acceptance are discussed. 

I. INTRODUCTION 

In our previous paper [l], we developed an analytical model 
suitable for studying APF beam dynamics in low-energy 
superconducting linacs. We derived equations of motion 
for the electric field described by a cylindrically symmetric 
travelling wave with a continuous phase modulation and 
obtained approximate analytical solutions for both the re- 
gions of linear stability and the nonlinear longitudinal ac- 
ceptance. In this paper, we generalize the model to in- 
clude a simultaneous modulation of the acceleration am- 
plitude. Early works in the field [Z] suggested that the am- 
plitude modulation may increase the effectiveness of APF. 
We show how the effect can be quantified in the context of 
our model. 

*Work supported by the U. S. Army Strategic Defense Command 
under the auspices of the U. S. Department of Energy. 

A. Equations of Motion 

We choose a sinusoidal modulation for both the phase and 
the amplitude of the electric field: 

E, = E. [ l+esin(i’Fdz’+6)] (1) 

x cos wt - 
i J 

z k(z’)dz’ + c$o + qs 
0 

where w is the angular velocity and k is the wave number 
of the rf field: 4s is the equilibrium phase, A and dr are 
the APF period and phase modulation amplitude respec- 
tively, and E and 6 are the amplitude modulation strength 
and relative phase respectively. For the central reference 
t,rajectory z,, we take 

J 
8c 

wt - k(r’)dz’ = 0. (2) 0 
We will use the following dimensionless variables to an- 

alyze APF throughout the paper, 

A& G -kAz, T = 
I 

Ic dr A 
0 T’ y=F’ (3) 

and 

(4) 

where (E) is the accelerating gradient obtained by averag- 
ing E, given by eq. 2 over one APF period, 

tE) = Eo [ Jo(41)Cos40 - fll($~)sin&cos6] (5) 

Following derivations in ref. [l], we get the equation of 
motion for the longitudinal coordinate AI$, 

d2Ad 
-p-= -*w2 [ (c(W) - 4’3) 

+ c (c(Adb(W) - c(‘Jb(O))] (6) 

where 

c(A4) = cos[me+*~+Qlsin(2nr-y)], (7) 

A4 2nr - - + 6 
Y >I 

(8) 
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In the transverse direction, we confine our attention to 
the linear motion only. The linear equation in the radial 
coordinate r will be given in the next section. It is obtained 
from using Maxwell’s equations which to the first order in r 
relate the transverse and the longitudinal field component, 
Er(r, z; t) = -r/2 aE,/&. 

B. Regions of Linear Stability 

Linearized equations of motion can be written as follows, 

@Ad 
--p = vu I 

(v - 41 cos 2~) sin (40 + 41 sin 2x+)] A$, 

(9) 
d2r 
G= - Gqv [ (v - ~$1 cos Znr) sin (40 + 41 sin lar)] T. 

(10) 
Keeping only the n = 1 term, we obtain the well-known 
Mathieu equations 

$?$ - 2 [ B + Cl sin (2~ + 81)] A$ = 0, (11) 

$+ [R+Crsin(2aT+0i)]r=O, (12) 

for which we can compute stable region boundaries. The 
coefficients B and Ci can be computed explicitly in terms 
of the APF parameters, 

D=~0v’[dn(bl)sin~o+cJ1(~1)cos90cos6], (13) 

Cl = --RqUIJ1(41)ICOSmo~~E(~), (14) 
where 

E(c) = 1 _ f (1 - v”) sin 240 cos 6 + 2vsin 6 + o cc’) 

$1 2 (sin’ $0 $ v2 COG 40) 
(15) 

Fig. 1 (a) shows stability boundaries in the oi - v plane 
for #a = 50, (17) = 0.25 (parameter (11) represents the rel- 
ative energy change over PA) with no amplitude modula- 
tion. Figs. 1 (b), (c), (d) show the effect of modulating the 
field amplitude with c = 0.1 and the relative phase 6 of 
O”, 90°, and 180’. The shift of the stable region to lower 
values of $1 is desirable because it allows to use smaller 
electric field strength Eo to achieve the same accelerating 
gradient in the APF cell (cf. eq. 5). 

C. Calculation of Longitudinal Acceptance 

Eq. 6 can be expanded in a Fourier series and written in 
the most general form as follows, 

d2Ab -= 
dr2 

-f$ + fJ [ u, sin(2nnr) + 21” cosjannr)] 
n=l 

flf3 
Solution to eq. 16 can be expressed as a sum of two corn: 
ponents, 

b+(r) = (A@(+) + 6 (W(T)) > (17) 
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Figure 1: Stability boundaries for trajectories not exceed- 
ing 90’ in either transverse or longitudinal phase advance 
with dc = 5” and (n) = 0.25 for (a) c = 0, (b) c = 0.1, 
6 = 0, (c) t = 0.1, 6 = $, (d) E = 0.1, 6 = ir. 

where (Ad(r)) represents the average motion and 
6 (Ad(r)) represents the fluctuations caused by the rapidly 
oscillating force (from here on we will drop the () when 
denoting the slowly varying solution). Following the pre- 
scription given in ref. [3] and applied to the problem of 
longitudinal acceptance in ref. [4], we can obtain the time- 
averaged equation of motion as 

d=A0 dlJeK 
p= 

-- 
dAq, ’ (18) 

where 

The potential function Uc and the Fourier coefficients u,, 
u, can be written as follows, 

l~o=u,“+ru;, u,=u~+cu~, tJ,=v;+w;, WV 

where Vi, u:, ~1 were given explicitly in ref. [l] and 

U,’ = crqv2Jl(&) cosb (cl + snA4 - ca), (21) 

vi = -aqv2 
$yl(41) (Cl&i - coso if n odd 

Ll(dJ1) (dl - 
:,’ 

soco 
-J,+l(dl) (s~c$~ - SOC{) if n even ’ 

(23) 
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co = cost,, cl = cm (40 + Ad) , 

so = sin 40, sl = sin (SO + Ad) , 

c; = cos6, & = cm (6 f ;A4) , 

6: = sin 6, si, = sin 
( 

6 k !A4 
v 1 

Given the effective potential, we can calculate the width 
of the separatrix in the (A+, g) space and the longitudi- 
nal acceptance. The equations are found in ref. [l]. Below 
we examine the solution accurate to 0 (A@‘). 

1) Second-Order Solution: The effective potential 
ljes can be expanded to 0 (Ad”) to yield 

Uetf(Ad) = ;A& - $A43 + , (24) 

where a is the square of the linear phase advance OL, 

n=+2B+&Cf (25) 

and 6 is given by 

b N ;qv’[ J~(Q~)cos&-rcos6J~(~#~~)sin&] 

+$$v2 (1 - v”) JF(&) sin 240 (26) 

[ 
cot2c#Jo x 1+2c- 

91 
cos 6 + 0 (2) 1 

The width of the separatrix I and the acceptance a~. are 
calculated to be 

lp= 3” 6 a512 
26’ @r.=&F. 

We have kept only the n = 1 terms in eqs. 25, 27. 
Figs. 2(a) and 2(b) show the effect of varying the rela- 

tive phase S on the separatrix width and the acceptance 
respectively for different values of c The calculations were 
performed for (11) = 0.25, 40 = 5’, $1 = 60°, and Y = 4. 
For E = 0.1 the separatrix can be widened by 20% with a 
corresponding 67% increase in the acceptance; for 6 = 0.2 
the respective numbers are 33% and 147%. 

III. CONCLUSIONS 

The enhanced model of the traveling wave with continuous 
phase and amplitude modulation presented in this paper 
gives quantitative predictions to the problem of longitu- 
dinal stability in APF linacs. The model describes the 
physics of APF with six parameters and yields analytic 
solutions for the stable regions and the longitudinal accep- 
tance. 

Effects of modulating accelerating field amplitude can 
be computed explicitly keeping only quadratic terms in 
the expression for the time-averaged APF force. Relative 
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Figure 2: Plots of (a) the separatrix width I and (b) the 
longitudinal acceptance OL for (7) = 0.25, do = 5O, dl = 
60”) Y = 4 as a function of the relative phase 6 for various 
values of the strength parameter 6. 

phase between the amplitude and phase modulations de- 
termines the degree of the acceptance enhancement (or re- 
duction). Many different scenarios can be investigated in 
the context of the model. 

Future work will focus on investigations of practical lim- 
its of APF in linacs with independent superconducting cav- 
ities and space-charge current limits. 
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