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Abstract 

We present an operation mode with very small 
momentum compaction factor for the LNLS UVX electron 
storage ring under construction in Campinas, Brazil. We 
establish conditions for longitudinal single particle stability 
in this quasi-isochronous mode including second order 
longitudinal and transverse effects. The results indicate that it 
is possible to operate this ring with the momentum 
compaction reduced by a factor of 100 with respect to the 
normal operation mode. 

INTRODUCTION 

The growing interest in very short electron and photon 
bunches provided by quasi-isochronous storage rings makes 
both the proposal of such rings for experiments and the anal- 
ysis of higher-order longitudinal dynamics of considerable 
importance. The condition of quasi-isochronicity requires a 
momentum compaction factor a several orders of magnitude 
smaller than the values normally found in storage rings used 
for synchrotron light sources. This leads to an orbit length 
which is nearly independent of the particle energy deviation. 
This is a necessary condition to produce ultra-short electron 
bunches as the bunch length scales with fi. The expected 
problems with quasi-isochronous rings are mainly related to 
higher order longitudinal dynamics and beam instabilities. 
When the zeroth-order (energy independent) momentum com- 
paction factor approaches zero, its higher order terms in ener- 
gy deviation can become dominant and introduce new features 
in the longitudinal dynamics. In addition, several beam insta- 
bilities have thresholds which depend on a. These problems, 
however, can be overcome as indicated theoretically by 
C.Pcllcgrini and D.Robin[*I, H.WiedemannIf and L.Lin and 
C.E.T. Goncalves da Silva[31 and demonstrated experimental- 
ly by Hama el al. 141 for the UVSOR ring. 

In this paper we present a small momentum compaction 
operation mode for the LNLS UVX electron storage ring151 
under construction in Campinas, Brazil. We study the single 
particle dynamics of this quasi-isochronous mode using a 
general form for the momentum compaction factor which 
includes the effect of second order terms and the transverse 
betatron oscillations. Tracking studies are also presented. 

OPTICAL FUNCTIONS FOR UVX QUASI- 
ISOCHRONOUS MODE 

The LNLS UVX lattice consists of six long straight sec- 
tions matched to six arcs with two dipoles and two 
quadrupoles between the dipoles. In the standard operation 
mode each arc is made achromatic and, as a consequence, the 
dispersion function 8, is always positive. To lower the mo- 
mentum compaction we combine two standard superperiods 
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into one with four dipoles and we force the dispersion func- 
tion to negative values at the two central ones. Thus, we ob- 
tain a three-fold symmetric quasi-isochronous ring preserving 
three fist-order dispersion free straight sections. 

We set the betatron phase advance so that the horizontal 
and vertical tunes in this mode are the same as in the standard 
mode. This allows continuous transference from the standard 
to the quasi-isochronous mode without crossing resonance 
lines during the process. This scheme has the advantage of 
avoiding the need to establish new injection conditions in 
this mode relaxing, therefore, the requirements for dynamic 
aperture. 

The zeroth-order momentum compaction factor a, can be 
controlled by adjusting the negative part of the dispersion. In 
this particular quasi-isochronous mode for UVX we have 
reduced a0 by a factor of 100 as compared to the standard 
operation mode. This reduces the bunch length by a factor of 
10, in this case from 8 mm (27 ps) to 0.8 mm (2.7 ps). 

Figure 1 shows the optical functions and the magnet 
lattice for one quasi-iscchronous superperiod in UVX. We 
have 4 families of sextupoles in the dispersive section and 
two families in the non-dispersive section. We use the disper- 
sive sextupoles to simultaneously correct the chromaticities 
and set the first order momentum compaction IO a desired 
value. The non-dispersive sextupoles are used to optimize the 
dynamic aperture. 
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Figure 1: Optical functions and magnet lattice for one UVX 
quasi-iscchronous superperiod 

NON-LINEAR SYNCHROTRON OSCILLATIONS 

In order to describe the longitudinal motion of the elec- 
trons considering higher order and transverse motion effects 
we need to include them into the expression for the momen- 
tum compaction factor. The path difference for one revolution 
around the ring for an arbitrary particle with respect to the 
ideal one can be derived by geometric considerations: 

where 8’ =x”+Y’~. We expand (1) keeping terms up to 
second order and express the particle amplitudes x and y as 

x=xp+‘706+~,62 
Y = Yp (2) 
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where 6 is the relative energy deviation. Noticing that the 
integrals containing terms which are linear with xs and ys 

stable fixed point a normal bucket and the stable phase 

vanish due to their oscillatory character, we have 
region around this new stability point an anomalous bucket. 

We define a critical al: 

where 
(3) J EOTO%flaOIJ 

aIc= 12e~0(-cosw,+(O.51r-yl,)sinw,) 
Lo 4 a0=+% 

00 P 

aI = LJ(~+y& 

k. =&-%(x$+$) 

(4) 

a~ and a,, respectively the zeroth and first order momentum 
compaction, are of chromatic nature and k. is of geometric 
nature. k. represents the effect of transverse oscillations on 
the orbit length. It can be estimated by using the smooth 
approxtmatton for the betatron oscillations: 

k. = “(crvx + EyVy) 
2.4 

The first order dispersion v0 is determined only by the first 
order magnetic elements whereas the second order term 17, is 
affected not only by those elements but also by the 
sextupoles. This makes the sextupole the natural ‘knob’ to 
vary the first order momentum compaction in a controlled 
way without changing the zeroth order value. 

The longitudinal equations of motion are: 
@=wd(ko+alG+a2S2) (8) 

(9) 

where w+ is the angular frequency of the rf cavity, PO is the 
peak voltage in the cavity, T0 is the revolution period, U0 is 
the energy radiated in one turn by the ideal particle and Jc is 
the radiation damping partition number. In deriving eq.(9) we 
have expressed the accelerating voltage by a sinusoidal wave 
form V(y)=coosin~. The ideal particle arrives at the 
accelerating cavity exactly at the synchronous phase vs. 

The last term on the right hand side of equation (9) 
represents the damping of the longitudinal oscillations. In 
our analysis we will neglect this damping term. In this case 
the equations of motion can be derived directly from the 
Hamiltonian: 

H = wlf ko6+FcY2 +FJ3 

which is the Hamiltonian for the dynamics of longitudinal 
phase motion including sextupoles and transverse effects. 

We consider fitly the case where ko=O. In the usual case 
(a,=O) the longitudinal phase space (v,s) presents just one 
stable and one unstable fixed point at (vS,O) and (z-~~,O), 
respectively. The second-order term (a@) creates additional 
stable and unstable fixed points at, respectively, (a-~~, 
-aala,) and (t,+,-ada,). We call attention to the existence 
of this new stability zone on the other flank of the rf wave, 
centered at 6=-acla,, which does not appear in the linear 
theory. We will call the stable phase region around the usual 

According to the value of al, the phase diagram will assume 
a different aspect. For la,lcalc the normal buckets are very 
similar to the buckets in the linear theory, but with a great 
asymmetry between the two branches of the separatrix. In 
this case, the energy aperture is very large, as well as the 
separation between the normal and anomalous buckets. As 
Iall increases the buckets approach each other. For la,l>alc 
the buckets change their form and the stable region decreases 
very rapidly reducing the energy and phase aperture. For 
lall=cz,c we have just the transition between the two cases 
as can be seen in figure 2. 
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Figure 2: Effect of a, onto phase space separatrix. When la,l 
is small (top), the buckets are large and well separated. As ia,1 
increases, the buckets approach each other and for la,l>a,c 
(bottom) their size decrease rapidly. The middle diagram shows 
the transition when la,l=alc 

We have seen that when the first order momentum 
compaction factor becomes dominant the anomalous bunches 
approach the normal bunches. Eventually, the anomalous 
bunches move within the physical energy acceptance of the 
storage ring. In this situation, it might be possible to 
observe the anomalous extra bunches intercalated in phase 
with the normal ones, doubling the number of bunches. It is 
interesting to see qualitatively what happens at this new 
point of stability. From the equation for the longitudinal 
phase, I$- a6, we see that a necessary condition for a stable 
solution (oscillatory phase) is that a6 changes sign 
periodically. In the usual case, we have a constant a and 6 
oscillates around zero changing sign periodically. In the 
anomalous case, the term which periodically changes sign is 
a while 6 has always the same sign. This is possible only 
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because the nonlinearity introduces the energy dependence of 
the momentum compaction factor. Expressing a=ac+a,& 
we see that the momentum compaction will oscillate around 
zero for values of 6in the neighborhood of &-ada,, which 
is exactly the energy of the anomalous stable point. In this 
situation, the anomalous bucket is entirely confined to the 
negative 6 half-plane (a0 and a, of the same sign) or to the 
positive 6 half-plane (as and a, of opposite sign). 

We consider now the effect of the term ko, from 
transverse oscillations, to the longitudinal buckets. We 
expand 6 for small kO and analyze the variation of the fixed 
points with the introduction of the transverse motion: 

I -IAL , 

SrP = 2 a0 a0 1 ko --I-- 
I aI 2 a0 

Since kO is always positive, we conclude that if a0 has the 
opposite sign to &a, the fixed points move in such a way 
that the stable phase space area increases with kO. In the other 
case, a0 with the same sign as an/a,, the stable area 
decreases with !Q. The transverse motion has thus introduced 
a distinct behavior depending on the sign of the zeroth and 
first order momentum compaction values. 

For UVX the critical value of a, is a,c=3~10-~. We 
study the case when the anomalous bunches are within the 
physical acceptance of the ring, $,h,s,acc=3%, The rf bucket 
will just fill the physical acceptance for la,l=4.4~10-~. 
Regarding the sign of a0 and a, we choose positive a, to 
keep the normal bunches at the same phase as in the standard 
operation mode, and negative a, to have the phase space 
increased with ko. We estimate the contribution from 
transverse motion, considering 10 % emittance coupling, to 
be k0=2.5x10-8. Figure 3 shows the normal and the 
anomalous buckets in this case. There are no noticeable 
perturbations to the buckets due to transverse motion. 
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Figure 3: Normal (left) and anomalous (rightTbuckets for 
UVX (full line) and the effect of transverse motion on the 
buckets (dotted). Straight lines are physical limits of the ring. 

DYNAMIC APERTURE CALCULATIONS 

Tracking studies have been performed to determine the 
dynamic aperture of this UVX quasi-isochronous mode using 
the codes Patpet16] and Teapot]7]. Both codes provided 
similar results. Two families of sextupoles in the non- 
dispersive region are used to minimize the tune shift with 
amplitude. We recall that these sextupoles do not affect either 
the chromaticities or the momentum compaction of the ring. 
The dynamic aperture simulations include effects of 

systematic multipole errors and synchrotron oscillations for 
1% energy deviation. The results are shown in figure 4. 
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Figure 4: Dynamic aperture for UVX quasi-isochronous mode 
with dispersive sextupoles adjusted to set chromaticies to 
zero and a, to -4.4~10.~; and non-dispersive sextupoles set 
to minimize the tune shift with amplitude. Systematic 
multipole errors and synchrotron oscillations for &l% are 
also included. The off-energy orbit has been subtracted. 

CONCLUSIONS 
We have analyzed the longitudinal phase space in quasi- 

isochronous storage rings including second order terms and 
the effect of betatron oscillations on the momentum 
compaction factor. The presence of the second order term 
introduces a new set of stable buckets displaced in energy and 
intercalated in phase with respect to the original set of stable 
buckets. When transverse betatron motion is considered, the 
stable phase region will depend on the particle amplitude. We 
have shown that this dependence will tend to enlarge the 
stable region when the signs of a0 and a&, are opposite. 

We have also proposed a quasi-isochronous operation 
mode for the LNLS 1.15 GeV UVX electron storage ring 
where a0 is 100 times smaller than in the standard mode. 
The chromaticities and the first order momentum compaction 
can be tuned by means of the sextupoles. The mode can be 
achieved by a continuous transfer from the standard operation 
mode, avoiding setting new injection conditions. This 
scheme could not be used for observing the new anomalous 
bunches since they do not exist in the standard mode. 
Dynamic aperture calculations show that we can have long 
lifetimes in this mode although injection is still difficult. 

We note that the natural emittance of the beam in this 
quasi-isochronous mode has increased by a factor of 
approximately 4 with respect to the standard mode. We plan 
to continue exploring the condition of simultaneous small 
emittance and short bunches as well as questions related to 
beam instabillities which were not addressed in this report 
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