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ABSTRACT 
A general relativistic matrix theory of charged particle 
beam motion along au arbitrary curved optical axis in 
4-space-time has been developed. This theory uses three 
basic matrix functions: the reference frame matrix, the 
curvature matrix and the electromagnetic matrix. The 
Cartan method of the moving 3-vector is generalized as 
the method of the moving 4 x 4 reference matrix. The 
curvature matrix function consists of the normal curva- 
ture, the geodesic curvature and torsion and three com- 
ponents of the gravitational force acting on the reference 
particle. The matrix equations of the beam motion and 
of the electromagnetic field are writ.ten. 

beam cross-section in a static electromagnetic field [lo] 
and [ll]. 

2 THE EQUATIONS OF A PARTICLE 

BEAM MOTION AND THE EQUA- 

TIONS OF AN ELECTROMAGNETIC 

FIELD. 

The nonlinear equations in phase space are reformu- 
lated as linear equations in phase moment space. A new 
compact recursive method is proposed for integrating 
these linear equations. Using this method the phase vol- 
ume of the beam will be strictly conserved in each step 
of the numerical integration. 

1 INTRODUCTION 
A general relativistic theory of charged particle beam 
motion along a curved opt,ical axis, including the gravi- 
tational field, is important for designers of optimal beam 
control systems. Some basic publications on this top- 
ics can be found in [I] - [4]. In these references the 
scalar and tensor methods are used and usually a nonrel- 
ativistic theory is developed. In this paper a new matrix 
approach is presented which is based on some previous 
papers [5] - [7]. This approach gives the possibility to 
develope a matrix relativistic theory of charged particle 
beam motion in the most general case of curved reference 
trajectory, including the gravitational force and space 
charge. Two detailed reports on this purpose have just 
recently been published [8] Some earlier papers have 
been devoted to the special problem of the effect of space 
charge. Both for the general case [9] and for a special 
case with an infinitely long beam and with an elliptical 

We understand the motion of any material body as a 
motion relative to other material bodies. The motion 
of any particle Q of the beam is described in the form 
of a motion relative to a single particle M of the beam. 
The particle M is called llre reference particle. The tra- 
jectory of the reference particle is called Ihe reference 
lrajectory or the optical (1zz.s of the beam. We aSsume 
that the reference trajectory is known and the motion 
of the reference particle is described relative to any ma- 
terial body. The position of an arbitrary particle Q in 
the moving reference frame is determined by the 4-vector 
L = AZ, where e is the reference frame matrix, attached 
to the reference particle M, ~1 and +2 are the trans- 
verse coordinates, 23 is the longitudinal coordinate and 
+4 = est. All quantities used are either dimensionless or 
expressed in terms of units of length of the beam motion 
or of the inverse length. 

The complete motion of an arbitrary particle Q can 
be decomposed in t,he following way: 

dQ = dM + dL = Edz,, + d (&5x) 

The motion of the reference frame is determined by 
the equation: 

de _ = e’= P(k,L)e, e(s0) = eo 
ds 
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where: 

0 k3 -kz 11 
-kg 0 kl I2 
kz -k1 0 l3 
11 12 13 0 

I-1 0 0 01 

eZ=G= 0 -1 0 0 

0 0 -1 0 
0 0 0 1 I 

For the Darbou reference frame kl is the normal cur- 
vature, k2 is the geodesic curvature, k3 is the geodesic 
torsion. The 3-vector I is the vector corresponding to 
the gravitational force F, acting on the reference par- 
ticle, i.e. F = -pl. The coordinates z, are chosen 
such that zml = z,2 = 0, r,,,s = s, ~,,,a = ct,, ds = 
pdrm, d.w = $rm > d? = dfidM, where p is the 
reference momentum and y is the reference energy. We 
sssume that the observer is located in the plane z3 = 0, 
i.e. that all particles Q reaching this plane at different 
times are detected. We will study the dynamics of par- 
ticles in the plane zs = 0, and therefore we have four 
independent variables 11, ~2, 24 and s. 

The equations of motion for an arbitrary particle Q 
can be written as: 

where: 

T’=-, b=Br’+k, ,$=Er’-1 

z’ = z:, + I’ + P (k, I) z 

I I 
%I1 = L2 - -0, &,=I, &,=I 

P 

h4 = 
J 

JY 
- ds + zm40 

so P 

The fields B and E are functions of 21, z2, z4 and 
s. The 3-vectors k and 1 and the scalars 7 and p are 
functions of s. 

The Maxwell equations of electromagnetic field may 
be written in the following matrix form: 

; (B,E)G 7 (z)+ [P(B,E)(:P(k,l)l~i(3)+ 

+[P(-k,I)P(B,E)G];i(3)+& =0 (2) 

p(-E,E)G~(r)+[P(-E,E)GP(k,l)]$i(3)+ 

+[P(-k,I)P(-E,B)G]$i(3)=0 

where: 

; (3) = (0, 0, 1,O) I 6 (z) = (V, (2) . ..I74 (4) 

Vi(~)=~, Vi(Z)=Vi(lT)j i=1,2,4 

V3(*) = -%$71 (x) - 572 (2) +&v(3) - 54 (2) 

v (s) = ; 

a, = -k3z2 +1,x4, a2 = k,z, + Izz4 

03 = 1 - kzzl + klrz + 13x4, Q = ; +l,x,+l~t2 

3 THE METHOD OF EMBEDDING IN 

PHASE-MOMENT SPACE FOR SOLV- 

ING THE NONLINEAR EQUATIONS 

OF THE MOTION OF A PARTICLE 

BEAM 
The analysis and calculation of the nonlinear systems of 
equations for heam formatCon are considerably simpli- 
fied by a transformation from the nonlinear differential 
equations of motion in the phase space (z, z’) to the 
system of linear equations in extended phase space, the 
phase moment space. This is the essence of the method 
of embedding in phase moment space. In this method 
the ideas that were originally presented in ref. [12] have 
been developed further in ref. [7]. 

We define recursively the rth power of the vector 2: as: 

( 

21 ,.. 
2’ = 

2, ,.. 
T::::), d(j)= (~~~~~::i,) 

tO(j)=l,j=l,..., n,l=l,.,., r 

This is called the r-moment of the vector 2: or in short, 
the r-moment, which has c1 (n, Y) scalar elements, where: 

N(n r) = (11 - 1 + PI! 
(71 - l)!r! 

Let us introduce the C-vector h, given by: 

hi = xi, i = 1,2,3, h4 = -II_.; 
P (0) 

h5 = -%‘,, hs = 
P (0) 

It is possible to show that in the phase space {/I) the 
phase volume remains constant during the motion. 
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Using the Taylor expansion of the functions either dimensionless or expressed in terms of units of 
B(h), E(h) and r’(h) to transform them into a finite length or inverse length. 
series, the equations of motion can be written as: Acknowledgement 

h’ = F(s) (h’) (3) 

where the vector is given from 
( >=( 

ir h’,h2 ,..., h’). 

The equations for the phase moments h”, where s = 
2, . . . . P, can be obtained with the same accuracy as eq. 
(3). Therefore it is possible to write the linear equation 
for the vector (h’) in the following way: 
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(h’)’ = P(s) (h’) (4) 
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