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Abstract 

A new method for extracting the beta-function and phase 
for the beam position monitors (BPMs) and the corrector 
magnets from the measured response matrix is presented. The 
response matrix relates beam motion at the BPM locations to 
changes in corrector magnet strengths. Using the model beta 
and phase as me initial values, new values are obtained by 
iteration. The accuracy of beta and phase thus calculated is 
limited by the accuracy of response matrix measurement and 
calibration of BPMs and correctors. The scaling ambiguity in 
the beta-function is resolved by matching the beta product and 
phase advance across a drift region. A by-product of this 
technique is an accurate determination of the betatron tune, 
and in principle, quadrupole strengths can be calculated from 
the betas and phases. This method is applied to data obtained 
from the X-ray ring at the National Synchrotron Light Source 
at Brookhaven. The possibility of applying the results to 
lattice-debugging will also be discussed. 

I. INTRODUCTION 

In the past, several methods for me measurement of 
accelerator beta functions and betatron phase have been 
suggested and applied. Accelerators having independently 
controllable quadrupole magnets can make use of the variation 
of tune with quadrupole magnet strength to extract the value 
of beta at the location of the quad, as is done at the Cornell 
Electron Storage Ring [l]. A technique was suggested by 
Harrison and Peggs [23 whereby betas and phases could be 
determined from closed orbit measurements resulting from 
varying two steering correctors in turn, provided that the 
values of beta and phase at those two correctors could be 
found from some other technique. The beta function and 
phase at the locations of all beam position monitors (BPMs) 
could in principle be found in this way. 

In this paper, a technique is presented for determining the 
best fit betas and phases at all BPMs and all steering 
correctors from measured response matrix data. The response 
matrix relates beam motion at the BPM locations to changes 
in steering corrector strengths. This technique is similar to 
that of Ref. [2], but makes use of all steering correctors rather 
than just two. Because the problem is severely over- 
constrained, the method of singular value decomposition 
(SVD) of a matrix is used to minimize the difference between 
the resulting ring model and the measured response matrix 
data. One by-product of this technique is an accurate 

determination of the betatron tune. The technique is applied 
to data obtained from the X-ray ring at the National 
Synchrotron Light Source at Brookhaven. Results are 
obtained which agree qualitatively with measurements made 
there two and a half years ago using the technique of Ref. [2], 
together with the least squares fitting, by Decker and 
Swenson, [3] 

II. THEORY 

Suppose that there are M BPMs and N correctors in the 
storage ring. Both M and N are larger than 1. Let pi and v, be 
the amplitude and phase functions at tbe location of the i-tb 
BPM. p, and r+rcj are similarly defined for the j-tb corrector. 
The response matrix Rd corresponding to the beam motion at 
the i-m BPM per unit angle of kick by the j-th corrector is then 
given by [4] 

Rij =$& COS (vi - ItIc. * ?‘tv). “‘I < “j (1) 
--: vi ’ WC, 

v is the betatron tune of the machine. The response man-ix R,j 
can be obtained from measurements, and we will develop in 
the following a method to extract the beta function and phase 
from the measured dam using Eq. (1). 

A. Calculation of Beta and Phase Functions 

Let us define 

i 

YJ+ wcj < vi 
wci, = 

WC,--2m. Wcj ’ Vi 

Then it can be shown mat B, and I+I~ are given by 

pi = (C:+ Si*) sin%rv, 

w, = a-1 s, 
0 ci 

+ XV, (0 < WI < 27~ and Vi+1 > ~1) 

where ci and s, are solutions of 

-- ‘-7 COS Vctj + Si sin ye,, - & Rij. (1 < j < N) 

In matrix form, Eq. (4) can be written as 

A.x=a 

(2) 

(3) 

(4) 

(5) 
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where 

A= 
cos Veil sin Wcil 

: I 

, x= 

cos l+t* sin VCN 

3 4-G 
a= 

i 1 
: 

2R, 
G 

The functions B and y for the correctors can be similarly 
obtained. With the definition 

WY 
Wij = 

i 

Vi < Vcj 

‘v, - 2m, 
(8) 

Wi ’ Vcj 

beta and phase functions for the correctors can be obtained 
from 

PC, = (Ccj* + Sc,Z, sin*rrv, 

ylcj=tan- ; 
0 

+Kv. (O<Wcj<21n,andyr,+,>W~j) 

Cci and scj are solutions of 

B.y=b. 

where 

B=[ ;I;;Ij I;;;, ), y=( 1;). 

and 

(9) 

(10) 

(11) 

(12) 

In Eq. (5), A is an N x 2 matrix which is a function of the 
phases of both the BPMs and correctors. x and a depend on 
the BPMs and the correctors, respectively. Similarly, in Eq. 
(IO), B is an M x 2 matrix which is a function of the phases of 
both the BPMs and correctors. y and b depend on the 
correctors and the BPMs, respectively. In addition, v is also 
an unknown parameter to be determined. 

In order to obtain a self-consistent set of solutions, we will 
use iteration. We start with a set of initial values for (pi, vi}, 
( Bcj, vcj), and V, which we use to obtain the matrices A and B 
and the vectors a and b. Since the number of equations is 
larger than the number of unknowns, the problem is 
overdetermined, and therefore, the exact solution does not 
exist in general. However, approximate solutions can still be 
obtained such that I A.x -a I and I B.y - b I have tie minimum 
values possible. These are the closest solutions for Eqs. (5) 
and (lo), and can be obtained using the technique of singular 
value decomposition (SVD). [5] The solutions thus obtained 
will best fit the measured response matrix and are used as the 
initial guess for the next iteration. This process continues 
until the solutions converge for a given v. 

B. Error Analysis andDetermination of Tune 

With the solutions for I3 and w, the response matrix R’ is 
reconstructed using Eq. (1) and the r.m.s. error 

AR= & z.(R’ij - Rij)* 
1.J 

is calculated. The error function AR represents the accuracy 
of the tune v used for iteration. The correct tune corresponds 
to the minimum AR, which again can be. used to estimate the 
error in the B-function. Let us assume that the relative error in 
p is constant. That is, 

igig& p, = p = Ga=constant foralli,j. 
I CJ 

Then from Eq. (1) it can he shown 

(14) 

6a 5 4 sin (ICV) AR <B,Bcj>-‘n. (15) 

<...> denotes me average value. This analysis, however, does 
not include the calibration errors in the BPMs and correctors, 
which could actually dominate the measurement error. 

C. Resolution of Beta-Scaling Ambiguity 

Inherent in the preceding analysis are tbe ambiguities in 
the scaling of beta functions and the offset of the phase 
function. The phase offset has no physical meaning and we 
will concentrate. on the resolution of beta-scaling ambiguity. 

In Hq. (l), Rj remain unchanged when pi is multiplied and 
B, is divided by a constant. Therefore, an extra constraint is 
necessary to determine the beta functions for BPMs and 
correctors. Consider a drift region of length L which has beta 
functions Br and fi2 at the end points and phase difference of 
Av. Then we have 

m2 sin Aw = L. (16) 

If a pair of BPMs or correctors can be found which have drift 
region between them, the scaling constant for the beta 
functions can be determined using Eq. (16). Multiple such 
pairs could be used to check for errors, 
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D. Measurement of Quadrupole Strength 

The strength of a quadruple magnet can be determined if 
beta and phase functions are known at points on both sides as 
shown in Fig. 1. The point 1 is at a distance 1, from the 
quadrupole magnet and has p1 and wl; similarly for point 2 on 
the other side. The quadrupole has length 1,. 

B- 
corrector Quadrupole corrector 
(PI3 n) VI (Pa v2) 

Fig. 1: Determination of quadrupole strength using p and w. 

The quadrupole strength K is then determined from 

dEEsinIv2-w,I= (17) 

i 

(&lJ2q)sin(qlq)+(l,+li)cos(qlq), K>O 

(~+l,l,q)sinh(ql,)+(l,+l~)cosh(qly). K<O 

where q = 4- IKI. In case the right-hand side of Eq. (17) is not 
very sensitive to changes in q, the accuracy of the solution 
depends largely on that of the p and w functions. 

III. ANALYSIS OF NSLS X-RAY RING 

In this section, we analyze the response matrix in the 
vertical plane of the X-ray ring of the National Synchrotron 
Light Source (NSLS) at Brookhaven National Lab. [6] Forty- 
eight BPMs and 39 correctors were used. 

With =0.005 mm error of BPM reading and corrector kick 
of =0.16 mrad for measurement of the response matrix, the 
measnremeut error 6R is estimated to be SR = 0.005 ! 0.16 = 
3x10-* (mirad). Figure 2 shows the plot of AR as a function 
of v. The minimum point is v = 6.184, where AR = 2.4~10-~ 
m/rad. This is in good agreement with the estimated error 6R. 

The p-functions obtained from the measurement (v = 
6.184) and the ring model (v = 6.2) are shown in Fig. 3. From 
Eq. (15). the relative error 6a in calculation of the p-functions 
is less than 2.3x1U3. 

When the results were applied to obtain the strengths of the 
quadrupoles, significant deviations (40%) from the nominal 
values were observed. This is largely attributable to (1) 
calibration error in the BPMs and correctors and (2) the fact 
that K is very sensitive to the resulting error in p-functions 
(AK/K = 0.3 Ap (m)). Considering the proximity of adjacent 
magnets to the correctors in the ring, sensitivity calibration of 
the correctors seems to be the dominant error source. 

6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 
v 

Fig. 2: Response matrix error to determine the vertical tune of 
the NSLS X-my ring. The minimum point is: v = 6.184, AR = 
2.4x10-* m/rad. The nominal tune is 6.2. 

0 45 90 135 180 

s (m) 
Fig. 3: The model and measured p-functions of the NSLS X- 
ray ring in the vertical plane. 
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