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Abstract 

The collider in the SSC has large second order chromaticity 
([z) with the interaction regions (IRS) contributing sub- 
stantially to it. We calculate the general expression for 
&Z in a storage ring and find that it is driven by the first 
order chromatic beta wave. Specializing to the interaction 
regions, we show that .$ is a minimum when the phase 
advance (Apyp-1~) between adjacent interaction points 
is an odd multiple of a/2 and both IRS are identical. In 
this case the first. order chromatic beta wave is confined 
within the IRS. Conversely, & is large either if Aprp-rp 
= (27~ + 1)~/2 and the two IRS are very far from equalit,y 
or if the two IRS are equal but Aprp-~p = nr. 

I. TUNE SHIFT AND CHROMATICITY TO 
2ND ORDER 

Consider a storage ring and label two points on it as 1 and 
2. Let /lo be the global phase advance around the ring and 
(/?I, (11, 71) the Twiss functions at point I. The periodic 
transfer matrix at point 1 can be writ,ten as 

MI = M(2 --+ 1). h,f(l -+ 2) (1) 

where M(2 + 1) is the transfer matrix from point 2 to 1 
etc. Let ~1 and ;A2 be the phase advances at points 1 and 
2 respectively with respect to an arbitrary reference point 
and pal = l/12 -plI We now introduce two infinitesimally 
thin quads of strengths 91 = IclAsl and 92 = kzAs2 at 
points 1 and 2 respectively. Their perturbations to the 
transfer matrix are described by the matrices PI and Pz 
where P, is 

P, = 
1 0 

-kjAs, 1 1 

The new global phase advance ,& = p0 + Ap is to be found 
from 

cos,Go = ;Tr &f, = cos/do + :Tr AM, (5) 

We also have 

cos PO = cos ILO cos Ap - sin ~0 sin Ap 

Substituting Equation (4) into the above and equating it 
to the expression for cos PO given by Equation (5), we have 

+AM1 = - rsin~r0A~l-r’[sinC1~A~~ + 
cosfb(4~1)2 

2 I 

+o(f”). (6) 

To obtain the corrections to ~0 order by order, we equate 
the coefficients of like powers of c on both sides of the above 
equation. We can generalise to N quad errors in the ring 
and then take the limit of infinitesimally thin quads dis- 
tributed around the ring of circumference C. In this limit? 
the 1st and 2nd order terms are, 

Ap, = ; 
J 

C 

k(s)ii?o(s)ds 
0 

b2 = 
1 

--++)b~(+s/~ k(s’),&(s’) 4sinff0 D .T 
x [cospa - cos(p0 - 21/L(d) - p(s)l)] ds’ 

-;cOtpo(Ap# (7) 

Here we have let /30(s) denote the unperturbed p function 
at the point s. In the equation for Ap,, we convert the 
integral over part of the ring to one over the complete ring 
and obtain 

These quad errors change the cyclic transfer matrix at 1 

point 1 to hl, 
A/Q = -- J 

c s+c 
8sinp0 o k(s)Poo(s)ds J qs’)Do(s’) 

I 

A?, = M(2 + 1) Pz M(l + 2). PI E Ml + AM, (3) 
x COS[PO - 2144 - I(S)I1 ds’ (8) 

Let Ap be the change in the global phase advance around 
Recognizing that the integral over s’ is related to the ex- 

the ring. We scale the quad errors by an arbitrary param- 
pression for the 1st order change in the 0 function (11, we 
obtain 

eter c i.e. k1 + ckl, kz + tkz and expand Ap as a power 
series in c, Ap, = f 

A/I = CA~I + c2Ap2 + _. 
s 

c 
k(s)W, (s)ds (9) 

0 
(4) This important relation tells us that the first order dis- 
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shift to second order in the gradient errors is (after putting 
the arbitrary parameter c to unity), 

*p== 
J 2 0 

’ k(s)h(s)ds + ; ~ck(s)AP~(s)ds + O(k3) 

(10) 
The gradient perturbations of interest here are those seen 
only by particles off the design momentum. The chomatic 
error introduced by t,he quads is then corrected by placing 
sextupoles at places of non-zero dispersion. Assuming that 
only the horizontal dispersion D, is non-zero, the effective 
quadrupole strengths in the horizontal and vertical planes 
for a particle with relative momentum deviation S = Ap/pa 
are respectively, 

h’efi = 

K)f 

K,(s, 6) + S(s, S)D,(s, 6)6 

= K,(s, 6) - S(s, 6)D,(s,6)6 (11) 

As functions of 6, K(s, 6) = Kc(s)/(l + 6) and S(s, 6) = 
Ss(s)/(l + 6), where Kn and Sc are the nominal quad and 
sextupole strengths experienced by a particle on momen- 
tum. We expand D and p as power series in 6, 

D(s, 6) = Do(s) + AD?(s)6 + AD;(s)&’ +. .(12) 

,9(s, 6) = PO(S) + A@(s)6 + Ab,C(s)@ + (13) 

where the superscript C denotes a chromatic expansion. 
Hence the gradient error in the horizontal plane for the 
off-momentum particles is 

k(s) = [S~D~-IGI]~+[IC~+S~(AD~-DO)]~~+O(~~) (14) 

Substituting into Equation 10 and writing the tune shift 
in terms of the first and second order chromaticity [i and 
[z respectively, 

Au E &I = &6 + &6’ + 0(63) (15) 

we obtain 

(1 = & p po(s)[so(s)Do(s) - ICO] ds 
0 

Ez = ; ~c[.U(+‘(s) - ICo]AP~(s) ds 

+k J 
oc Po(s)&(s)AD~(s) ds - (1 (16) 

The first order changes in @ and D are given by 

W:(s) -1 

I 

3tc 
- zz 

ho(s) Zsinpc s 
[&(s’)~0(s’) - ~Ms’)lh(4 

x cosbo - Ws’) - P(SII A’ 

AD?(s) =-&--‘+ls) [So(s’lio(s’)] 

x D,,(s’) cos[$ - jp(s’)-p(s)11 ds’ (17) 

Ignoring the phase factors for the moment, we see that 
AflF which contains factors of P(s) rather than m 

(as occurs in AD?) will dominate the contribution to the 
second order chromaticity. This situtation can change if we 
choose the phase advances between the major chromatic 
error sources appropriately. For example, two sources of 
equal strength r/2 apart in phase will produce /3 waves 
exactly out of phase so there will be no resultant 4 wave. 
The dispersion waves produced by the same two sources 
will add in quadrature. Alternatively, if we want to cancel 
the net dispersion wave, t.he two sources should be ;7 apart 
in phase. In this case the b waves will add exactly in phase. 

Hence to reduce the second order chromaticity, the first, 
order changes in /3 and also in the dispersion D should 
be minimized. Conversely, the regions where A/%‘1 is large 
(e.g. the triplets in the IRS) will contribute the most to 
the second order chromaticity. The above expression also 
exhibits the variation of [z with the global tune. Since 
the first order ,B wave diverges at integer and half-integer 
tunes, [z will be amplified as ~0 approaches 0 or 0.5 and 
will be a minimum at vc=O.25 

II. CHROMATICITY DUE TO IR TRIPLETS 

The total chromaticity of an IR includes contributions from 
the triplets, the quads in the A4 = -I section and the vari- 
able strength quads in the tuning section [2]. The triplets 
alone contribute 76% of this chromaticity at collision. Con- 
sequently we will consider the tune shift due to the chro- 
matic error of the 4 IR triplets only and ignore the effect 
of other quadrupoles and sextupoles. Let 

Q& = / KP ds 
ith triplet 

Then to 2nd order in the momentum deviation 6: the 
phase shift due to these 4 triplets is 

Ap = Ap16 + A/.& + O(h3) (18) 

where Ap1 = -l/2 X:=1 Qi@$ and 

&2 = 

-API - +po(Apd2 (1% 

pji is the phase advance from the ith triplet to the jth 
triplet and vs = pn/2n is the global tune of the ring. The 
first order chromaticity is independent of phase advances 
between the triplets. However the second order chromatic- 
ity depends crucially on the relative phase advances be- 
tween the triplets. If the phase advance between the IPs 
is Aprp-~p, then the relative phase advances have the fol- 
lowing values, 

p21 = T, ~31 = APIP-IP, ~41 = APIP-IP + r 

P32 = APIP-IF - r, @42 = APIP-IP, P43 = ir (20) 

With these values, the second order contribution reduces 
to 

Ap2 = ‘%Q + ;(Q& + Q282 + Q343 + Q4P4) (21) 
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where AP~Q is the contribution from terms second order 
in the quad strengths, 

4tanw%w = (&IA + &2P2)(&3a+ Qrb4) 

x{l- c~%J~P-~P -PO) 
cm PO 1 

-f(QdA + &z/92 + Q3p3 + Q&d2 (22) 

For arbitrary ~0, the term in curly braces is a maximum 
and hence A/1sq is a minimum if 2Aprp-rp = (2n + 1)~. 
Conversely A/L~Q is a maximum if ZAplp-rp = 2nrr. The 
large p functions in the triplets ensures that A~ZQ com- 
pletely dominates the contribution to Aps. Hence choosing 
APIP-up = (2n + l)i7/2 minimizes the 2nd order chro- 
maticity of the IRS. This is due to the fact that the chro- 
matic 3 waves from the IRS are exactly out of phase and 
interfere destructively. The following discussion will as- 
sume this choice of Ap,p-rp. 

An exact cancellation of the fl waves occurs if the two 
IRS have the same ,L?‘,,,~~L. In this configuration, the repet- 

itive symmetry across the two IRS implies Q& = &i,~$, 
Qd34 = Q2&. AP 2~ vanishes as a consequence of the fact 
that the @ wave is zero outside the triplets. The entire 2nd 
order phase shift is 

APZ =(QIPI+&zPz) (23) 

For this case alone, Aps is independent of the global tune 
VO. 

In the following table, we evaluate the 2nd order chro- 
maticity due to the triplets in three different configurations 
and at two tunes. 

Table 1 : 2nd order ehromaticity due to the triplets 

Case 

1) Eaual 1Ps 

t2 
uo = 0.285 u. = 0.4 

I 
kgO.25m 
p=0.50m 

II) Unequal IPs 

154.0 154.0 
77.0 77.0 

p =6.25m,‘B* =0.50m 
III) One IP 

p’=0.25m, fl’=8.00m 

1156.4 6524.8 

3977.5 24132.6 

For all cases except the first, the second order chromatic- 
ity is a minimum at vc = 0.25 and will be significantly 
amplified as vs + 0.5 

The chromaticity correction scheme proposed for the IRS 

is discussed in [3]. Briefly, sextupoles are placed in 24 arc 
cells adjacent to the cluster containing the two IRS. The 
third case in Table 1 at tunes (123.435,122.416) has large 
is and requires nonlinear correction. For this configura- 
tion. Figure 1 shows the chromatic p wave (at &0.0003) 
through the cluster and adjacent cells without the nonlin- 
ear correction. Figure 2 is the corresponding figure after 
the nonlinear chromaticity is corrected. The a beat in the 

g 50 
q 

5 

2 

0 

-50 
I-CLUSTER f 

I I I I I I I I I I 1, 

-10 0 10 20 

Wavelengths from 1st IP 

Figure 1. Horizont,al Chromatic p beat lvithout nonlinear 
chromaticity correction 

30 I I 
I r ” I r n r I’4 

sExTuPoLEs sExTuPoLEs 

-30 3 1”” II ‘I 4 ‘I ” 1 ’ c 18 
-10 0 10 20 

Wavelengths from 1st IP 

Figure 2. Horizontal Chromatic fi beat with nonlinear 
chromaticity correction 

arcs is reduced from 75% in Figure 1 to 2% in Figure 2. 
This clearly illustrates the connection between the chro- 
matic fl wave and the nonlinear chromaticity. 
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