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We develop the general equation of motion of an ampli- 
tude function mismatch in an accelerator lattice and look 
at its solution for some interesting cases. For a free p- 
wave oscillation the amplitude of the mismatch is written 
in terms of the determinant of a single matrix made up 
of the difference between the new Courant-Snyder param- 
eters and their ideal values. Using this result, once one 
calculates the mismatch of the amplitude function and its 
slope at one point in the lattice (at the end of a nearly 
matched insertion, for example), then the maximum mis- 
match downstream can be easily computed. The formal- 
ism is also used to describe emittance growth in a hadron 
synchrotron caused by amplitude function mismatches at 
injection. 

While most of the content of this paper is not new to 
the accelerator physics community, we thought it would be 
useful to place this important, basic information all in one 
place. Besides the classic work of Courant and Snyder, our 
sources include other papers, internal reports, and numer- 
ous discussions with our colleagues. More details may he 
found in a related paper.[l] 

I. A STARTING POINT 

The general solution for linear betatron oscillations 
in one transverse degree of freedom can be written as[2] 
z(s) = Amcos[ti(s) + a] where A and 6 are constants 
given by the particle’s initial conditions. The phase ad- 
vance g’(s) and the amplitude function p(s) satisfy the 
differential equations $J’ = $, 2pa” - PI2 + 4p21i = 4, 
where IC = e(aBy/&)/p, with e = charge, p = momen- 
tum, a&/ax = magnetic field gradient, and p’ = @/ds, 
etc. When one considers the periodic solution of the am- 
plitude function, the mot,ion through a single repeat. period 
can be described in terms of the Courant-Snyder parame- 
ters /3(s), o(s) E -(do(s)/ds)/2, and r(s) E (1 + a’)/ti, 
using the matrix 

( 

cos li)c + a sin $JC P sin ic 
-y sin +C cos 7)~ - CL sin $C > 

(1) 

which operates on the state vector X, with X = (z,+‘)~. 
Here, the phase advance is $c = 2av = J”,“,“‘” &, where 

*Operated by the Universities Research Associat.ion, Inc.. for 
the U.S. Department of Energy under Contract No. DE-AC-35 
89ER40486. 

C is the repeat distance of the hardware, which may be 
the circumference of the accelerator, and v is the tune of 
the synchrot,ron. 

The matrix of Equation 1 is often written in compact 
form as M = I cos Gc + J sin $c where 

The amplitude function and its slope propagate through 
an accelerat,or section according to 

Jz = M(sl + s~)J~M(s~ - sz)-l , (3) 

where J1 and Jz contain Courant-Snyder parameters cor- 
responding to points 1 and 2, and M(sl - ~2) is the trans- 
port matrix between these two points. 

II. PROPAGATION OF A THIN GRADIENT 
ERROR 

We wish to see how the amplitude function downstream 
of a thin gradient error is altered. If Jo(so) is the matrix of 
unperturbed Courant-Snyder parameters at the location of 
the error and Jo(s) contains the unperturbed parameters 
at a point downstream, then, using Equation 3, 

Ad(s) = hl(s,, --+ s)AJ(so)M(so is)-‘, (4) 

where 

AJ(s) = J(s) - Jo(s) = ( -;T-ea;o, 
B - PO 

-[a _ ao) ) ; 

(5) 
,D is the new value of the amplitude function at s, /Ia is the 
unperturbed value, etc. Through a thin quad, Aa = q&, 
A0 = 0, and Ay = 2aq + U’q’ and so 

%= 
Do(s) 

-(iAq) sin ‘WD(S - SD) 

+;(,h# [l - cos2tio(s - so)] (6) 

where &(s-ssg) is the unperturbed phase advance between 
points so and s and /?I E ~~(~0). The amplitude function 
perturbation oscillates at twice the betatron frequency and 
for (/3%q) sufficiently small, the perturbation describes sim- 
ple harmonic motion. The change in a also propagates at 
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twice the betatron frequency, it being given by Rewritten in terms of the Courant-Snyder parameters, 

Aa(s) = /%~[cos~$~I(s - SO) - ao(s)sin2&(s - so)] 

--~(Bq)‘binW0(s - SO) 

-ao(s)( 1 - cos2~o(s - so))] (7) 
detAJ = - (‘)’ ;~@@-;” ‘)’ < 0, (11) 

0 

Introducing this quad error also changes the phase ad- 
vance across the lattice. The new phase advance-$(s - so) 
across this section may be calculated using sin $(s - so) = 

Thus ,detAJ1l/z 
’ 

can be interpreted as the amplitude of 

A?(so - s)lz/m where #(so + s)12 is the (1,2) ele- 
the B mismatch for small perturbations. 

ment of the new ring matrix and P(s) is the new amplitude 
The solution to Equation 10 is just simple harmonic mo- 

function at s. Using Equation 6, we obtain 
tion with a constant term added: 

sin $(s - so) = [l - Pjp sin 2Go(s - so) $-f(O) = .4 COS~VO~+ Bsin2v&+ aldetAJ/. (12) 

+ (Piq)‘sin* &(s - so)]-“‘sin&(s - 50) (8) The constants A and B are found from the initial condi- 

An explicit result for the change in the phase advance may tions: 
be obtained perturbatively in orders of the quad error Q 
from the above exact expression. To second order in 4, we il = g(O) - $detAJi, (13) 
find that the change Ali, 3 $(s -so) - &(s -so) is 

A$ = /3ipsin2 &(s - SO) 
13 = no g(o) - 4cY(O). (14) 

- Wn) *sin 2tio(s - so) sin’&(s - so) + O(q3) (9) Thus. the maximum value of ilfl/& downstream of our 

To first order in q, at a point s/2 away from the location 
starting point, 4 = 0 is given by 

of the error, there is no change in the p function while the 
change in phase advance is at its maximum value of&q. 

mar 
= dm + $detAJI 

III. EQUATION OF MOTION OF P-WAVE = IdetAJI 

The equation of motion for an amplitude function mis- 
2+ J,,,,,.(l,, 

match is nonlinear when s is taken as the independent 
variable. A more congenial equation can be developed by 
using the the reduced phase 4 E ti/v as the independent 
variable. For betatron oscillations the Floquet transforma- 
tion, where the other variable is < = xl@, produces the 
equation of motion 3 + v*C = 0 which is pure simple har- 
monic motion with frequency (tune) v. For the amplitude 
function mismatch, we need to define the reduced phase in 
terms of the unperturbed functions. That is, let 4 E $O/VO, 
where d&/ds = l//30, and vg is the unperturbed tune. The 
equation of motion for p(4) - po(d)]/p0(4) E Ap/& in 
the absence of gradient errors is then 

= -2~: detAJ 

= 2&Aa2 - APAy] (10) 

where 40 = a(4) - so(Q), etc. The quantity detAJ is an 
invariant in portions of the lattice without gradient per- 
turbations as can be seen with the aid of Equation 3. 

So, the free amplitude function distortion oscillates with 
twice the betatron tune and with a constant offset given 
by the determinant of the AJ matrix at any point. This 
offset must be there since p > 0 and hence A,0//3 must 
always be greater than -1. 

where use has been made of Equation 11. The maxima 
occur at phases where 

tan ‘2voqb = (16) 

The usefulness of the above result is, of course, that once 
one calculat,es the mismatch of the amplitude function and 
its slope at one point in the lattice (at the end of a nearly 
matched insertiou, for example), then the maximum mis- 
match downstream can be computed immediately. 

If we look once again at the perturbation downstream of 
a thin quadrupole error, we see that just after the quad, 

det4J = qRz 0 -A 
7 -9ai 

= -(qPiY (17) 

where ,& = DO at the location of the quadrupole. Then, 

A? 
( i - 

6 rnP1: 
= piljltdl+ (48)‘/4 + ;(48i)2 (18) 

x ql& = l,/$Gzj 119) 

where the last line is valid for small perturbations 
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IV. GENERAL EQUATION OF MOTION where ~7~ G PI,!?0 and Aa,. E a - ao(p/&). 

To include the driving terms due to gradient errors in 
the equation of motion for Ag//3,, we let PO satisfy the 
differential equation K/& = ~0 +crb, and let p satisfy (I\‘+ 
k)p = y + cr’, where ,!? = PO + A@, etc. Then, the relative 
p error satisfies 

If the phase space coordinate system were rotated so 
that the cross-term in the equation of the ellipse were elimi- 
nated, the ellipse would have the form x~/b,+b,$, = &AZ 
where b, E F + m and F is given by 

$ g(4) + PwJ)2 $f(d) 

F f ; p0-f + rap - 2aocu]. 

Note that if Aa, = 0, then b, = pr 

= -2Uo” [Pi%9 k(d) (I+ $$/J)) + d--id)] (20) 

Here, in general, detAJ(q5) is not invariant as it is altered 
by gradient perturbations: 

-$detAJ($) = ,@k$$f 
0 (21) 

For small perturbations we can drop quantities which 
are second order in the small quantities, e.g. kA,8. This 
reduces the above equation to 

There is a physical significance to the quantity b,; it is 
the ratio of the areas of two circumscribed ellipses which 
have shapes and orientations given by the two sets of 
Courant-Snyder parameters found in the matrices J and 
.lo. This might suggest that a beam contained within the 
smaller ellipse upon injection into the synchrotron (whose 
periodic functions give ellipses similar to the larger one) 
will have its emittance increased by a factor b,. However, 
this would be an over-estimate of the increase of the aver- 
age of the emittances of all the particles. 

$ $0, + (24’ $0) = -24 Pi k(O) (24 

as appears in Courant and Snyder.[2] 
Noting that Aa - ao(Ap/&) = -(1/2v~)d(A~/~~)/d&, 

one can easily exhibit Equation 20 entirely in terms of 
A,B//?o and its derivatives with respect to 4. Differentiat- 
ing this resulting equation one obtains a linear differential 
equation for AD//I&: 

If in the beamline view the new phase space trajectory is 
r’+$ = b,.R2, then in the synchrotron view, the equation 
of the ellipse would be & + & = 1. A particle with 
initial phase space coordmates xi and qO, will commence 
describing a circular trajectory of radius a in phase space 
upou subsequent revolutions about the ring. The equilib- 
rium distribution will have variance in the 3: coordinate 

(0”) CT* = (x2) zz 2 = -c.---. o b2 + Ia2 = F g2 
26, 

01 

-g g + (2v&l+ &k)$ y 
0 

+ 2@$#k](l+ $$) = 0. (23) 

where ui is the variance in the absence of a mismatch. 
This expression can be rewritten in terms of detAJ which 
we found in Section III.: 

V. INJECTION MISMATCH 

$ = 1 + i Idet(AJ)I 

It is also of interest to look at the effects of mismatches 
of amplitude functions upon entrance to an accelerator. 
The treatment below may be followed in more detad in [3] 
and [4]. A beam which is described by Courant-Snyder pa- 
rameters that are not the periodic parameters of the accel- 
erator into which it is injected will tend to filament due to 
nonlinearit.ies and hence have its emittance increased. Sup 
pose /3 and cy are the Courant-Snyder parameters as deliv- 
ered by the beamline to a particular point in an accelerat,or, 
and 4,, o, are the periodic lattice functions of the ring at 
that point,. A particle with trajectory (z, 2’) can be viewed 
in the (z, pz’ + (HZ) E (2, II) phase space corresponding to 
the beamline functions, or in the (f,,&0t + aoz) E (z, I/“) 
phase space corresponding to the lattice functions of the 
ring. If the phase space motion lies on a circle in the beam- 
line view, then the phase space motion will lie on an ellipse 
in the ring view. The equation of the ellipse in the “ring” 
system will be 

For the case where the slope of the amplitude function is 
matched and equal to zero. we have 

$=l+&&;)‘. (28) 

This says that a 20% p mismatch at injection, for example, 
would cause only a 2%) increase in the rms emittance. 
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