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Abstract 
We present a method to minimize the corrector strengths re- 
quired to reduce the rms beam orbit. Any least square correc- 
tion method will usually lead to undesirably strong corrector 
settings. The method, we are presenting, minimizes the to- 
tal kick vector by finding the eigen solutions of the equation 
d = Aj, where-? is the orbit change vector c is the kick vec- 
tor and A is the response matrix. Since A is not necessarily 
a. symmetric or even square matrix we symetrize the matrix 
by using AT4 instead. Eigen vectors with corresponding small 
eigen values generate negligible orbit changes. Hence, in the 
optimization process the kick vector is made orthogonal to the 
eigen vectors. 

The physical interpretation of the eigenvectors will be dis- 
cussed. We will illustrate the application of the method to the 
NSLS X-ray and UV storage rings. From this illust,ration it will 
be evident, that the accuracy of this method allows the combi- 
nation of the global orbit correction and local optimization of 
the orbit for beamlines and insertion devices. 

1 Introduction 

In circular machines, the beam orbit is usually very im- 
portant to the output of the machine. A good example 
is synchrotron radiation facilities where the source point 
and direction of the photon beams depend on the beam 
position and angle. In addition the lifetime of the beam 
in the machine, the maximum current, and sometimes the 
ability of the machine to store a beam at all depends on 
an accurate beam orbit. 

2 The response matrix and its 
eigen states 

IJsually in a circular machine, the beam position is mon- 
itored by a set of pickup electrodes (PUE), distributed 
around the machine and orbit correction is performed using 
a set of distributed dipoles (correctors). The relationship 
between a change in the strength of a corrector and the 
corresponding change of the beam position at the PUEs, 
is expressed by the response matrix. In this section we 
define and analyze the response matrix. 

2.1 Definition of the response matrix 

It is well known that the orbit change due to a change in 
the corrector strengths (orbit kick) can be expressed as [l]: 

x’=“gj (1) 
‘IVork performed under the auspices of the U.S. Dept. of Energy 

under contract no. t)EAC02-76CI-100016. 

where 6 = [Oj], 1 5 .i I: N, is the kick vector, x’ = 
[Xi], 1 5 i 5 N, is the orbit vector and A = (Ai,j) is 
the response matrix. The element Ai,j of the response 
matrix is the orbit change on the i-th orbit monitor due to 
a unit kick from the j-th corrector. In this paper, unless 
otherwise specified, the beam position and the orbit kick 
are expressed in mm and Kdigit’, respectively. 

2.2 Eigen solutions of the response matrix 

In general, the number of correctors and monitors are dif- 
ferent, consequently the response matrix A is rectangular 
and Eq. (1) is over or under constrained. To solve Eq. (l), 
we left-multiply it by AT, the transpose of the response 
matrix A: 

A=g=A=A6 (‘4 

The solution of Eq. (2) is the least-square approximation 
of a solution of Eq. (1). The matrix AT A is symmetric and 
non negative. The eigen solutions of Eq. (2) can be found 
by diagonalyzing the matrix AT.4, resulting in the eigen 
values [Xj] and the corresponding eigen vectors [Sj]. An 
eigen vector 8j represents a set of corrector values. The 
orbit change corresponding to the j-th eigen vector is: 

~j=A~j (3) 

It can be shown that 

(Zj 1 27) = hj (4) 

The physical meaning of the eigen values becomes clear 
from Eq. (4). An eigen value Xj is a quantitative measure 
of the orbit response (of the machine) to the j-th eigen 
vector. A small eigen value Xj corresponds to a small rj 
orbit change (< Zj2 >rms = X, /Nm). This property of the 
eigen solutions will be used later in the paper for reducing 
the corrector st,rengths without significantly changing the 
resulting orbit. 

3 The representation of a circular 
machine 

In order to give physical interpretation to the response ma- 
trix and its eigen solution one has to look at the dynamics 
of the beam orbit in a circular machine. In this section 
we lay out the dynamics that lead to the response matrix 
and show the physical meaning of its eigen solution in one 
case. 

‘digits - Digitized voltage of the computer controlled corrector 
power supply. 
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3.1 Courant-Snyder equation 

For a given set of discrete PUEs and correctors, the beam 
position at the j-th PUE is: 

NC s= 2si~*u~~ej\/s;c0sv(10:~QjI~*) t C5) 

where p; is the 0 function value at the PUE in which Zi 
is observed, 4: is the phase location of that PUE, 9, is 
the angular kick introduced to the beam by the corrector 
located at phase +j, pj is the B function value at dj, v is 
the tune (number of betatron oscillations) of the machine, 
and N, is the total number of correctors. 

It is easy to see from Eq. (5) that the elements of the 
response matrix A are: 

Atj=Ecosv(ld:-ijI-a) (6) 

Note, that in most practical cases the numerical value of 
the matrix element Aij cannot be theoretically evaluated 
to a satisfactory accuracy, since the values of & and pi 
are not known. It was actually suggested [4] to use the 
measured value of the response matrix elements in order 
to estimate the values of the 0 function. 

3.2 Equidistant correctors and monitors 

Consider the case, when there are equal number of PUEs 
and correctors (N, = NC = N) and they are positioned at 
equal intervals around the ring. Furthermore, for the sake 
of simplicity, we assume that the 0 function has the same 
value for any PUE (/‘3i = /VIM), and that it has the same 
value for any corrector (0, = PC). Clearly the response 
matrix in such a case is cyclic * since the symmetry is such 
that the point i = 0 can be chosen arbitrarily to be any 
PUE. It is indeed, easy to prove, by way of mathematical 
induction that Eq. (6) yields a cyclic matrix whose first 
line is 

Al, = xlifTGG -cos.[~ (3-i) -??I . (7) 
2sinnv 

The i-th element of the j-th eigen vector and the j-th eigen 
value of a cyclic matrix A are: 

2k 
Ej(i) = lexp iNj2 

( > 
, 

A, =gAZp [i$j(k-l)] 

Thus the eigen vectors of the response matrix are those 
expressed by Eq. (8), namely they are the harmonics of 

‘A cyclic matrix is a matrix where the lines are arranged so that 
the first element of a line is the last element of the previous line and 
the other elements are copies from the previous line. 

the ring. Substituting Eq. (7) in Eq. (9) results in 

xj = iexp [irj (I- $1 ~~~~~~) 

+iexp [-iTj (I- $)I ~!~fj~~j . (10) 

As it is expected [l], the orbit response to the j-th har- 
monic (A,;) gets larger as j gets closer to the tune V. 

It can be shown [5], that for the most general case of 
non symmetric rings with non equidistant and non equal 
number o’f correctors and monitors, the eigenvectors repre- 
sent the harmonics, the local bumps and the errors in the 
ring. 

4 Corrector strengths reduction 

As mentioned earlier, the property of the eigen solutions 
that a small eigen value corresponds to a small orbit change 
can be used for reducing the corrector strengths without 
significantly changing the resulting orbit. 

Let b,, be the orbit to be corrected and 6 its corre- 
sponding kick vector, calculated by any method (e.g. least 
square). The RMS of the residual orbit is: 

XrmaZ = +IA6 - ,<,I2 (11) m 
As long as the Xj eigenvalue is small, the corresponding ZJ 
orbit is small and one can reduce the 6 kick vector by the 
j-th eigenvector without significantly modifying the orbit. 
The reduced kick vector is: 

6 red=tT-&G’dj)ij , (12) 
j=l 

AZ;,,,, = z;,,,,, - (z&),,. < c (13) 
The 6 red reduced kick vector is ‘equivalent’ to the original 
6 vector to F accuracy. It is important, that both. the 
norm of the vector and its largest component is reduced: 

&d? < @,1* and (%d)mar < %a, (14) 

This method was implemented in the NSLS resulting in 
reduction of up to 70% in the average corrector strength 
and up to 90% in the maximum corrector strength. In ad- 
dition the accuracy of orbit correction was significantly im- 
proved since the elimination of the small eigenvalue states 
reduces the error in orbit calculation. 

5 Correction by decomposition 

In the previous Seciion, we made use of the eigensolutions 
to reduce a given 0 kick vector, obtained by any method 
of orbit correction. However, one can directly use an eigen- 
vector decomposition based orbit correction method, thus 
avoiding the need for reduction. This method will yield 
the ‘minimum’ kick vector for a desired accuracy of orbit 
correction. 
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5.1 Global orbit correction 

Let z0 be the orbit to be corrected and let us decompose 
it in terms of the Z, ‘eigen’3 orbits: 

Cj = -2, Cj , (15) 

That is, each Zj vector is represented in z0 by the c? 
coefficient. 

Let us next define an orbit vector, XC0 as: 

‘~:,, = ~ CI ~j (16) 
j=l 

The norm of this vector is l,vcO1’ = Cyzi cj and l~?f~lz < 

jz,,I*. Actually, the uncorrectable part of the orbit is: 4 

AT?&,, = &l/f012 - pQl’) = co2 (17) 

Substituting Eq. (3) into Eq. (1G) we obtain 

X;so = AFCjJj , (18) 
j=I 

that is, the kick vector which corrects the x’, orbit to to 
co accuracy can be obtained from the eigenvector decom- 
position of this orbit as: 

&~,d,,~ (19) 
j=l 

This method already assured that we are using only the 
minimum contribution from each eigenvector, thus the 6 
kick vector is ‘minimized’. If, however, one can allow an 
c > E, tolerance in the orbit correction, then some eigen- 
vectors (or part of it) with the smallest eigen va,lues can 
be omitted, further reducing the 0 kick. Actually, we can 
skip the eigenvectors until the corresponding decomposi- 
tion coefficients satisfy: 

$cj2 5 E tohere E=N,,,c’ . (20) 

In reality, there is no such J, for which the equality would 
be exact.ly satisfied. Generally, the sum for the first J - 1 
eigenvector is E’ < E and for the J-th eigenvector the sum 
will be greater then E: 

J-1 

CCj2+CJ2=E’+cJ2 
>=1 

3The 2j vectors are defined in Eq. (3), they represent the orbit 

change corresponding to the 6 eigenvectors. They comprise an or- 
thogonal but not a complete ortoganal set, and they are not unit 
vectors. 

4This part of the orbit cannot be corrected by any method with 
the given set of orbit correctors. 

Therefore to achieve an c accuracy in the orbit correction, 
we can omit the first J - 1 eigenvectors and a part of the 
J-th. The remaining terms will be: 

J+l 

(J2+xCj2 , where c; = cJ-A and A = &I/= 
j=l 

(22) 
and the sign of A is the same as the sign of CJ. 

The implementation of this method in the NSLS resulted 
in orbit correction to an accuracy of X,,, = 15pm with 
very small changes in corrector strength (sometimes the 
average corrector strength was in the single digits). 

5.2 Including local bumps 

The tolerance on the global RMS orbit, even though very 
stingent, is usually larger then the tolerance on a few se- 
lected PUE’s, usually at the ends of insertion devices. In 
case of the NSLS X-ray ring, for example, the requirement 
on the global RMS orbit is 100 p, while before/after the 
insertion devices 20 p. During operation, for each fill of the 
ring, first the global orbit was corrected using harmonic or 
least-square method then local bumps were implemented 
to position the orbit more accurately at the insertion de- 
vices. 

With the decomposition method we implemented the 
global and local orbit correction at the same time by as- 
signing different weight factors at those PUE’s in sensitive 
positions before/after the insertion devices. 

6 Other uses of eigen vectors 

One can use the Eigen vectors to measure the Response 
Matrix. Instead of the usual method of kicking with one 
corrector at a time and measuring the orbit response of 
the ring, the excitation of the Eigen vectors yield better 
results with higher accuracy [5]. 

We are also using the Eigen vector decomposition 
method in Digital Feedback in the storage rings (see [S]). 
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