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Abcsract

A method of beam intensity redistribution in a
transport channel containing linsar and nonlinear ele-
ments to provide uniformed irradiation area at the
target is discussed. Linear elements {quadrupoles)
are used to prepare a larce beam spot at the target
and nonlinear elements (octupoles, dodecapoles, etc.) Y, Cm
are used to improve the beam uniformity. A kinematic
relationship between the final beam distribution vs.
initial beam distribution 2nd optics channel parame-
ters is given. The flattering of a Gausszian beam is
discussed.

Introfuction

A uniformed irraiatizn zone at the target is X, &3
often reqguired when particle beams are applied. A par-
ticle distribution of an aczcelerated beam is usually

approximated by Gaussian distribution. A useful method 60 E_
employing nonlinear optics to improve the beam distri- £
bution uniformity was considered [1-6] . The method is 40 E:
based on nonlinear transverse velocity modulation of "
particles which force the reripheral particles to move 20 E
fzster to the axis than the inner beam particles. ) E_
During the drift after mog:lation the heam halo is Y. C
eliminated and the boundaries of the beam become more -0 E—‘
cronounced. The method is acplied secquentially to both s
transverse planes. A supersosition of independent den- 40 £
£

sity transformations in transverse x and vy directi- —EGQ

ons results in a rectangu beam spot at the target Finalis ;.11 1 ;1 Ll
with high vniformity (see Zig. 1). —40 v} 40
Equalization of a Gaussian Seam X, Cm

The one dimensiogal problem of beam inten51§y re- Fig. 1. Projecticns of computer simulation using code
distribution was considered in ref. [8]. Modulation of EEAMPATE {7] into real space (x-y) for an initial
transverse velocity of the beam at z = 0 {upper) and final {lower) beam distribution in a non-
. linear optics channel.
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p(xo) = dN/de to distribution p{x) at any z as
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vhere o, = a,z/v,, v, is a longitudinal »eam velocity.
Particle‘dis%ribution p(x ) of an accelerated
beam is usually approximated by Gaussian function L = 1 +d, (5)
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wrare the value of ZA is usually assumed to ezual 2 Ao = —
transverse size (radius) =¢ the bean. From egs. (2) ZRF2 SN Ly (e K
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To provide rectangular éistribution the numerator
and denominator in eg. {Z; have tc be the same functi-
on of x5 and can be distinguished by constant value
only. Tne number of lensa2s in a transport channel is
limited that means the truncztion of series in denomi-
nator. Let us see how the flattening of initizl Gaus-
sian beam depends on truncation of the series in equa=-
tions (2) and (3).

The expansion (3) concists of the terms with even
power of X which correspond to optical elements with
242 (k=1,2,...) planes of symmetry or lenses with
dk+4 poles (B-pole, 1Z-pole, 16-pole, 20-pole, ete.).
Actually the pure octupols field, being proportional
ta xj ., corrects the second temm in expansion (2),
which is proportional to b Similarly *the erld of
ideal 12-pole lens, being proporticnal to XO , corrects
the third term in expansion (3), which is proportionail
pelo] XO ., etc.

Assuming that the transport channel consists of
Suadrupoles to extend the heam and octupole to improve
the uniformity of the beam. The final distribution is

Pr el — xz/ZAz?
plx) = —= z (6)
(1 +ely) (- x /2‘“T

1
Tne denominator of eg. (€. =guals zero if g ==2.
It resulis in peaks at thz boundaries of the final
distribution (see fig. 2b). Adding a dodecapole gives

the function

2 z
p. exp{ -~ xT/23°)
plx) = —2 0 (7)

2 2 < 4
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(1ni2}(1 XO/2A mO/Bu }
without any peculiarities mecause the denominator in
eg. (7} is always positivz (see fig. Zc). Expression
f7) results in a more flaztsned distribution than
€3. (6). Adding 16-pole lens results in peaxs in the

final distribution function as well besause the deno-
minator of the function

2 2
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(T4l 31 = XS/ZA - it L xS/éSRS)

equals zaro if x, =+ 1.7

The analysis shows
1s characterized by the peaxs correspc d:rc 10 Zero
values of denominator in eg. (2) if the highest multi-
pole consists of 8k poles (¥=1,2,...}., On the contrary
the final distribution is more flattened if the multi-
fole series is truncated bv a 8k+4 pole element (k=1,
2,...). The portion of the Zlattened particles is
increasing monotonously with the rise of the highest
rmaltipole number. In f£ig. 3 the nunber of flattened
sarticles versus the highest multipole order is pre-
sented.

Farameters of miliipole lenses

Egs. (5} give the valuss of nonlinear optics coef-
ficients to provide extended uniformed distribution.
n ref. [8] the coefficients wore determined via len-
525 paraneters. It is convenient to use the dafinition
2f strength Sp of an n-th  order mul*laolﬂ cf length
iq  Zor @ bezm with partizle rizidity iE. [oF} fors

Lo .
- iJ i

-
=

where Ej is the pole-tip field, R is the pole-tip
radius.

A sirple combination of two magnetic zuadrupoles
at T distance between them results in an extended
beam with the coefficient of linear modualation

ol, = 8, Lz (10)

The strength of higher order multipoles which provide
for a uniformed particle distribution is the following:

n Z

The eguivalent electric pole-tip field cf Zrn-pole lens
is EC = VyBp -

The required number of ampere-turns MI at the
pole of 2n-pole magnetic lens is cobtained using
Stokes theorem:

L ipa - [7 @& (12)

Selecting an integration loop along the circle betwe-
en neighbouring poles and neglecting the magnetic
field inside the core the left hand integral for the

azimuthal comgponent of magnetic field Eg G(r/RJn_l-
sin(n@) is
ﬁ/n BDD

B, RdEB =— — {12)
/‘40 J ﬁo n
The right hang integral is equal o
Jj’d? = 2% {14)
From egs. {(13) and (14] it follows that
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/“o
The power consumption of the lens is

BLaR 2 gn

w = _g_ ( 9 (16)

)
Mo s

where g is a specrific resistance, h is an average
length of one turn, S is a cross section of the win-
ding at one pole.

Conclusion

The nonlinear optics method for improving the
ream intensity distribution was discussed. The kine-
matic relationship between the initial and the final
distribution via lenses parameters was given. The fe-
atures of the Gaussian beam transformation into rec-
tangular distribution were considered. Major consi-
derations relating to selection of lens pararpeters
to rrovide fcr & roguired cdistribution at the target
were discussesd.
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Fig. 2. Transformation of initial Gaussian distribution (a) into flattened distribution usinz
different combinations of muitipole lenmses: {b) —~ octupole; () - octupole + dodecapole;
{d) - octugcle + dodecapole + l6-pole.( see egs. (6), (7), (8}).
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