© 1989 |EEE. Persona use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must be obtained from the |EEE.

A LOCAL AREA COMPUTER FOR DATA ACQUISITION AND CONTROL

Tomas Russ, Zdenek Radouch, Coles Sibley
MIT Bates Linear Accelerator Center
P.O. Box 846, Middleton, MA 01949

Abstract

A low cost control and data acquisition computer system
was developed to be used as an element in distributed archi-
tecture control systems. It can be viewed as a low cost re-
placement for the CAMAC crate and its associated computer.
This Local Area Computer (LAC) is based on the STD bus
backplane, a low end industrial standard. Currently, it runs
on a 8088 based processor card. Communication with other
computers on the system is achieved through a specially de-
sighed SCSI-Ethernet controller, which can be programmed to
allow sending of data only during a specified “time slot”. This
mechanism avoids delays on the network due to collisions, and
enables the LAC to dump its entire “database” at regular in-
tervals for retrieval by one or several hosts. Software -written
in C and running under the VRTX real time executive- mimics
the easy access to the hardware typical of CAMAC modules,
allowing interfacing to comtrol system software developed at
other laboratories. Most of the LAC components are “off the
shelf” items. However, some peripherals specific to accelera-
tors, such as high stability voltage references and charge ADCs,
were developed in house.

Introduction

Controls systems for accelerators have been following the
general trend in the computer industry of distributing the pro-
cessing and data acquisition functions. Given the sheer phys-
ical size of most accelerators, distributing the interface to the
hardware so they can be in close proximity, can be justified
often times just by the savings realized in cabling costs. [n
the past, such distribution was obtained by connecting several
CAMAC crates to a controlling computer. Now a days, with
the steep drop in the price of computer hardware, it is more
economical to distribute not only the harware interface, but
the entire computer system.

A typical control system architecture (Fig.l) can be
thought of then as a series of data processing computers (work-
stations), data acquisition/control or front end computers —
which interface with the hardware — and a data network that
allows them to communicate.

Characteristics of Front End Computers

The front end computers are required to respond very fast
to control requests from the data processing computers. They
are also in charge of gathering all the accelerator related in-
strumentation data for use at the data processing end.

Most of the interface with the hardware in accelerator con-
trol systems can be implemented as simple reading or writing
to I/O ports. Tasks such as setting a magnet or reading a
BPM are normally reduced to writing a 16 bit number to a
D/A converter, or reading the digital output of an ADC. In
those cases, very little local processing power is needed. One
can think of having the front end computer take care of some
of the scaling or noise reduction tasks, but in general these jobs
are better handled by workstations at the data processing end.

In other cases —perhaps 10% of the total hardware inter-
face functions— it is clearly beneficial to add some on-board
processing. Take as an example a system to measure beam
profile by moving a wire accross the beam and reading the re-
sultant secondary emission. This involves the coordination of
moving the wire —perhaps with a stepper motor—, and simul-
taneously digitizing the secondary emission. A great number
of points would have to be processed to obtain the desired re-
sult, which is normally a couple of numbers that described the
best fit gaussian to the beam. Clearly, processing every point
through the network makes little sense.

In yet other cases, perhaps intermediate in complexity
between the simple I/O port access and the data reduction
process of the beam profile monitor example, protocol conver-
sions are needed to make the data accessed by the workstations
meaningful. A good example would be the reading of GPIB de-
vices through a front end computer. Typically, the user at the
data processing end would like to receive the actual data read
from the GPIB device. The ASCII sequence of control charac-
ters needed to produce this data should be hidden, handled by
the front end computer.

The Local Area Computer

We have developed a front end computer that is designed
to handle a subset of the total hardware interface in a typical
accelerator control system. This subset can be a certain physi-
cal area (all the magnets, BPMs, current and vacuum monitors
in a ring arc, for example) or a functional area (e.g., all BPMs).

CATA NETWOHK

l

| |

l DATA DATA

)
NS FRCHT FRONT FHONT FHONT
PROCESSING PAOCESSTHG END EMD £NU B
COMPUTER COMFUTER COMPUTER COMPUTER COMPL TEH COMPUTER
HARDWARE

e
CONTHOL ROOM

Fig. 1 Typical Distributed Architecture Control Sys-

tem.

CH2669-0/89/0000-1669%01.00©1989 IEEE PAC 1989

These Local Area Computers {or LACs) can be accessed
only through the data network (in our case, Ethernet). In their
present version, they are meant to handle tasks that are not
CPU intensive, such as direct I/O port access and protocol
conversion. A consistent software interface has been designed
to allow for different hardware configurations in the future.

The LAC architecture is based on the STD backplane, a
low end, low cost, indusirial computer bus !, As shown in
Fig.2, the typical configuration consists of a CPU card (8088)
with an incorporated serial port and interrupt controller, a
memory card, and several peripheral cards to communicate
with the accelerator hardware. Most of these cards are avail-
able from commercial suppliers. Some of them, specific to ac-

celerator needs, were developed in-house?:?.

The interface with the Ethernet network is done through
an intermediate bus, the Small Computer Systems Interface
(SCSI). This was done in order to allow different backplane
buses to be used in the future without modifying the network
connection. All known computer manufacturers support the
SCSI bus (normally used for connection of mass storage de-
vices).

LAC communication

As mentioned before, the two main tasks performed by
these front end computers are to satisfy control requests from
the data processing end, and to acquire and transfer instrumen-
tation data. These two requirements have different urgencies
associated with them. Control requests need to be satisfied as
soon as possible (change the setting on a magnet, for example).
General instrumentation data ought to be refreshed at an ad-
equate raie, but does not carry as a whole that much sense of
urgency. There is also a big difference in volume of data. Con-
trol requests normally involve very little data transfer, whereas
the amount of instrumentation data can be quite big.

We have therefore established two different mechanisms to
deal with these requirements. For control purposes, a request

o 1 [- ———

ETHERMET «E L yiME sLoT
scsl TRIGGER
CONTROULER
eT]
BUS + 50
SCSt
HOST
ADAPTER
s oBys I 1
T N (s o I [V Rer.
PROCESSOR | MENORY e
> e
CoRE cARD
BEAM (eeiﬂ}, 1 M8 MAGNET
POSITION HTERR.|
MONITORS [“ﬂ’f'_l ' CONTROL
DIGINZER o e
- R5232
APPLICATION APPLICATION
SPECIFIC CONSOLE SPECIFIC
CARDS CARDS

Fig. 2 LAC architecture.

packet is received though the network by the LAC. The LAC
executes the desired action, and returns the packet to the orig-
inator with the reply status. This process takes typically less
than 50 ms.

For instrumentation data transfer, an unsolicited trans-

1670

mission of all instrumentation data acquired by the LAC is
periodically produced . This transmission is not meant for any
destination in particular, but carries rather a multicast des-
tination *. Any data processing computer interested in that
particular piece of the instrumentation database can attach to
that multicast address and receive the packet. The rate at
which this transmission is produced is given by an external
trigger connected to the Ethernet controller (Fig. 3). One
typically sets it to 3 to 4 Hz.

This synchronic transmission of the instrumentation data
accomplishes several purposes. On the one hand, the multicast
addressing makes it possible to transmit only one copy of the
instrumentation database, no matter how many data process-
ing computers need it. On the other hand, the synchronism
allows to set a different transmission time for each LAC on the
network, therefore avoiding the possibility of collisions, which
is the main source of real time response problems in Ethernet.

Synchronic transmission 1s not a normal feature of the
Ethernet standard. In order to implement it, an in-house Eth-
ernet controller-transceiver card was developed®. The trigger
pulse, common to all LACs, is processed by an internal timer
within the Ethernet card to insure that LAC transmissions are
staggered. Notice that this feature in no way violates the nor-
mal Ethernet protocol.

BPM
~ PACKET Ve

GPiB
PACKET

TIME SLOT
TRIGGER

1/0 PORTS
PACKET

C.

M
L

| 1]

e g B

TIME SLOT AVAILABLE fOR LAC 1 TIME SLOT FOR LAC Z {

[IF # OF LACS=28 "HEN 12mS]

—x

Fig. 3 Database Update. Every LAC multi-
casts all its instrumentation data (or
the data that changed from last update)
once every trigger pulse. A time slot js
assigned to each LAC to avoid collisions
on the Ethernet.

Network Access

All network accesses are produced at the data link level,
i.e., all higher layers of the network protocols are bypassed.
This significantly increases the speed at which transactions are
made. One would think that the price is a loss of reliability in
the network connection.

In a request/reply exchange, flow control (normally pro-
vided at the Transport Level) is not needed because of the
straight acknowledgement of the request by the returned re-
ply packet. Therefore a simple timeout at the originator end
can be used to reiry the request in case of failure. In a mul-
ticast transmission of instrumentation data, data may be lost.
However, this isn't critical because of the periodic update of
information. The addition of a sequence field in all multicast
packets is used then to detect lost packets.

Software
Fig.4 shows the software diagram for a LAC. The SCSI
driver and packet DEMUX are common to all LACs. Specific
application drivers are constructed to interface with the hard-

PAC 1989

ware. Most LACs will have the two shown in the figure, IOP
(standard 1/O port driver} and GPIB.

In a typical request/reply sequence,a request packet is re-
ceived by the SCSI driver, and analyzed by a port demulti- 6. Ready Systems, VRTX/86 User’s Guide, Version 3, 1985
plexer. The port number identifies which application driver

5. T .Russ, “Ethernet Controller Adds Communications to SCSI
Bus.”, Electronic Design, 36,20, Sept.8, 1988, 91-96.

this request is meant for. If that application exists, an empty
buffer would be available in the corresponding queue, which is
filled with the contents of the request and passed along to the
application. The application (in this case IOP), executes the
request and returns the packet to the originator through the
SCSI driver.

In the case of a multicast transmission (Fig. 5), the SCSI
driver receives an indication by the Ethernet controller that
the last synchronic transmission has concluded (TRIGGER).
All application drivers are then signalled. They, in turn, gather

HETWORK

all the instrumentation data in a single packet and load it into
the Ethernet controller for transmission when the next trigger

pulse arrives. Each application transmits the packet with a
different multicast address, allowing for the data processing lhufee ®
computers 1o receive only the information they need. O

All software for the LACs is written in C and runs under] 2 T ek UL PACKETS
the VRTX real time executive®. Code is developed on an IBM M ,:‘CK:EM = :mm 4 T [
personal computer and down loaded to the target for execution. R mm/_w_‘ 2, \

Once stabilized, the intent is to burn it in ROM and have it @:‘:?:L. o/ """/'7 = \ /
run stand alone. g \/,ﬁ/

Measurements and Conclusions

HARDWARE
Timing measurements taken on a LAC prototype are pre- FARORARE
sented in Table 1. The data transfer speeds, however modest,
are perfectly adequate for the needs of an accelerator control Fig. 4 Software Dataflow Diagram for Re-
system. quest/Reply.
LAC 1
Request/reply 25 ms. |
SCSI data transfer >1 MByte/s.
STD data transfer >150 KByte/s.
Jitter in time slot <200 ps.
®©
Table 1. Some Timing Measurements. triager e
recelved

> 4>

We described a low cost data acquisition/control computer
that can perform most of the hardware interface tasks associ-
ated with an accelerator control system. Moreover, the use of
standard data networks (Ethernet and SCSI), real time exec-
utive (VRTX) and high level language (C) open up the pos- ety
sibility of integrating other front end computers to the same

A>T 4UPO—HArCE

DEST, PORT | OPPORT
DEST. LADDR | MCAST.
SRC. PORT QPPOAT

processes

/ X
’, N
network. PROCESSES \

QUEUED

ON_ TRIGGER ® N
send

References ou, micast N

\
1. STD Manufacturers Group (STDMG), “STD Bus Specification /‘\
and Practice”, Doc.#10689E, Oct.1984. (Di:J?R |

2. A.Saab, “STD Compatible, 10 Bit, 8 Channel Fast ADC.”,

contributed paper T24 in this conference. ® Tneirimantation —
data HARDWARE

3. A.Saab, “STD Compatible, High Stability 16/18 Bit DC Ref-
erence.”’, contributed paper Y7 in this conference.

Fig. 5 Software Dataflow Diagram for Multi-
4. Dhgital Equipment Corp., Intel Corp., and Xerox Corp., “The

ETHERNET, A Local Area Network, Data Link Layer and
Physical Layer Specifications. V2.0”, 1984.

cast Transmission.

1671
PAC 1989

