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Abstract 

We shall review the basic physical processes 
involved in charged particle beam propagation, in a 
self-pinched mode, in the atmosphere or other dense 
neutral gases. These processes include single- 
particle collisional and radiative energy losses, 
collective energy loss, radial expansion due to 
scattering, and instabilities. Each of these imposes 
requirements and limitations on beam propagation. We 
shall concentrate on highly relativistic electron 
beams. Ion beam physics is similar but more complex 
(because ultra-relativistic approximations are 
inappropriate), and has been less studied. 

Introduction 

A charged particle beam injected into a neutral 
gas begins immediately to ionize the gas. For 
example, in air at standard atmospheric density each 
beam electron collisionally ionizes about 100 thermal 
electrons per cm. Thus, the “plasma” electron density 
n exceeds the beam density n 
Dfjer a time scale 1/4nu, a ver B 

almost immediately. 
strong radial space 

charge field expels a small fraction of the plasma 
electrons, thereby setting up a charge-neutral region 
within the beam and out to a large radius b=c/4no. 
(Since the plasma is typically weakly ionized and 
collisional, it can be characterized by a local scalar 
conductivity u.) Thereafter, the only radial forces 
on the beam are magnetic: the beam is pinched by its 
self-force, but this may be partially neutralized by 
reverse currents induced in the plasma. The beam thus 
propagates in a self-pinched equilibrium, with the 
magnetic pinch balancing the beam’s transverse 
pressure, as well as any centrifugal force if the beam 
is rotating. The equilibrium radius is proportional 
to the emittance and inversely proportional to the net 
(beam plus plasma) current I . [If the radial profile 
of the plasma current J (r) “differs from that of beam 
current J 

k 
(r) it is necgssary to define an appropriate 

radially- veraged “effective current.” that controls 
the pinch strength [l]. We shall neglect such subtle- 
ties here.) Since I 
backward in the beam: 

generally increases as one moves 
the equilibrium has a trumpet- 

like appearance, with the radius steadily decreasing 
(Fig. la). Indeed, the very front of the beam, where 
charge neutrality has not been established, is 
unpinched, has a large radius and constantly erodes 
due to both radial expansion and energy loss. 

Single-Particle Energy Loss 

Highly relativistic electrons lose energy, due to 
ionizing collisions with gas atoms, at a rate given by 
Bethe’s formula [2.3], 

dE/dz = -(2nnZe4/mc2)1n(~3m2c4/2fi2<w>2), (1) 

where n is the gas atom number density, 2 the atomic 
number i and -fY<w> a characteristic bound electron 
energy. For electrons with E>l MeV in full-density 
air, thi s stopping power is 200 Fo 300 keV?m. 

For- hi&energy electrons (e.g., 2100 MeV in 
air), energy loss due to bremsstrahlung emission 
dominates. This energy loss process proceeds 
exponentially, with the mean energy <E> decreasing as 

d<E,/dz r. -<E>/$ (2) 

with the radia;ion length Xr given by 

l/X, = 4nZ(Z+l)(e2fic)(e2/mc2)21nh, (3) 

with h~192/Zl’~ if y>lOO, or B;l,‘;ss~f,h~~~l~ner~; 
standard-density air, X”=300m. 
loss is statistical iA nature, leading to a large 
energy spread (“straggling”). This has important 
implications for beam stability and range [4]. 

Other single-particle energy loss mechanisms, 
e.g.. synchrotron radiation, are relatively 
unimportant for beams propagating in air. 

Radial Expansion 

As a result of multiple small angle scattering 
off nuclei, an unpinched electron beam in standard- 
density air expands as the 3/2 power of distance. 
This expansion is rapid as compared to energy loss. A 
pinched beam also expands as its emi ttance increases 
by scattering, but in a different and much slower way. 
Energy loss also has an effect on the beam radius a. 

Let us consider a beam which is subject to the 
energy loss mechanisms discussed above, as well as to 
multiple small-angle scattering at an angular rate (21 

Sa d<e2>/dz = 16nn(Ze2/ymc2)21n(210/Zl’3). (4) 

Because neither electron-electron collisions nor 
bremsstrahlung emission result in angular scattering 
of a high-energy electron (to within order l/v, 
assumed negligible), it is easily seen 
mechanisms leave 

that thefe 
the unnormalized emittance Eead<9 > 

invariant. If we assume that scattering is slow 
compared to a betatron oscillation wavelength X of 
the befm electrons in the pinch potential, I.e., 6% at 
X S/<9 > <<l, it can be shown [5] that the beam radial 
p&ofil4 assumes a self-simiiar Bennett profile, ayd 
that E increases at a rate a S. In equilibrium, <9 > 
is fixed by Bennett condition, 

<2>=In/IA, (5) 

where I ~17@y kA is 
6 

the Alfven-Lawson current. Thus, 
the slo changes in y (energy loss) and E (scattering) 
lead to a steady adiabatic change in a, 

d ln(y-1’21 1’2a)/dz = l/L n N’ where 

LN I (hc/2ne2)(In/IA)y2Xr. 

(6a) 

(7) 

For example, 
density air. 

LN=(tnE/7x1012watts)X. in standard 
Equations (6),(7) ark known as the 

Nordsieck equation, derived in its basic form (but 
never published) by A. Nordsieck in the early 1960s. 
Later contributions were made by Lee [ 5,6]. Fawley 
(unpublished recent work) was the first to derive the 
correct energy dependence in the LHS of (6a). 
(unpublished). 

Energy loss that is due tn the effect of E 
electric fields (ohmic loss, Eo be discussed below? 
conserves the transverse momentum p symv, of each beam 
electro 99 and thus, increases the transverse pressure 

‘ynbmv!$h~;eas 
Ohmic energy loss thus causes beam expan- 

sion, i t is evident in Eq. (6a) that single- 
particle energy loss leads to beam contraction. 
Mathematically, it can be shown that ohmic loss leaves 
the normalized emittance YE constant, and that when it 
predominates the Ncrdsieck equation takes the for:r 

d ln(v 1/2I l/7 
n a)idz = l/iN~ (6b) 
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A few electrons undergo larger-angle single 
scatterings, which lead to “Moliere scattering” [ 71. 
These electrons escape to large radius, and it is 
simplest to regard them as lost. This leads to a slow 
decrease in beam current Ib, but to a reduced rate of 
emittance growth for the remaining beam. The net 
effect [E] is to increase Ly by 20% to 40X, which is 
in good agreement with experiment [9]. 

A beam can only be considered to be pinched, and 
the Nordsieck equation only applies, if the Nordsieck 
expansion rate (basically an exponential process with 
e-folding range LN) is slower than the diffusive 
expansion rate for an unpinched beam. This sets a 
minimum condition for propagation in the pinched mode 
in a dense medium. It is also to be noted that in air 
Nordsieck expansion occurs more rapidly than single- 
particleiynergy loss if I <8OkA and E<lOOMeV, or if 
I E<7xlO watts and E>lOO&V. It ig thus evident 
tRat high current and/“or energy are necessary for 
effective self-pinched propagation in dense media. 

Energy loss and radial expansion represent funda- 
mental limitations on range, which can be alleviated 
only by propagating in a reduced-density channel 
(“hole-boring”). This can be accomplished by sacrifi- 
cing the front of a particle beam to heat the air and 
induce radial expansion, which increases the range of 
the beam tail, or by using a series of beam pulses to 
produce the same effect, or by using some other means 
to heat and prepare a reduced-density channel. 

Plasma Return Current, Ohmic Loss, and Nose Erosion 

Lenz’s law suggests that a CPB should induce an 
axial electric field E which opposes the propagation 
of the beam and driqes a reverse current in the 
conducting medium. E extracts energy from the beam 
and eventually dissiBates it in the plasma through 
resistive decay of the return current. For a highly 
relativistic beam with v =c, E does not arise at the 
very front of the begm, & w ere the gas is non- 
conducting. The fields there are purely transverse 
electrostatic/magnetostatic. In effect, the beam 
serves as a guide 
in the vacuum. As 

for an electromagnetic wave (Er,Be) 
0 increases, many things happen in 

rapid succession at the point where &t-z=c/4aa. (< 
is the distance behind the beam head, a very useful 
coordinate for many purposes.) The beam charge is 
neutralized and the self-pinch is established. (Hence, 
this region of the beam is called the “pinch point”.) 
Maxwell’s equations reduce to Ampere’s law out to the 
radius wherein space charge neutrality prevails. The 
E field “turns around” and becomes an E field which 
ii governed by the inductive term in f mpere’s law. 
This leads to a very large spike in the field E (z), 
which can reach many MV/m. As o continues to incgease 
rapidly, the “monopole” magnetic decay length 
CT E(Znaa’/c)ln(b/a) becomes much larger than the beam 
radius a and the net current is frozen in. Thereafter 
E takes the value 
tfie value of I 

necessary essentially to maintain 
established at the pinch point. Since 

0 is rising rgpidly, E (Z) decreases rapidly, making 
the E spike very narrgw. Thus, ohmic energy loss 
extragts energy primarily from beam electrons near the 
pinch point. Furthermore, ohmic loss results directly 
in radial expansion, as we have seen. Thus, it is 
appropriate to regard ohmic loss as primarily a 
mechanism for erosion of the beam front. If one 
assumes, for convenience, that the beam current I,(S) 
and voltage V are constant, then the ohmic energy loss 
rate is equivalent to erosion of the beam front at a 
rate [lO],[ll] 

dUdz = (In/IA)ln(b2/a2). (8) 

We note that nose erosion is additionally driven by 
scattering, since Nordsieck expansion is fastest at 
the pinch point, where the pinch force is weak [lo]. 
Scattering-driven erosion is not included in (8). 

Calculations [ 111 also show that if the 
ionization of the gas is due entirely to beam 
collisions with gas atoms, then typically In settles 
down to a slowly varying value 

In=Ib/(l+X) (9) 

short1 y behind the pinch point. Here X=dr /dt 
md(naa /2c)/dZ is a normalized measure of the 6 earn 
current. The fractional current neutralization 
f=-I /I increases with beam 
propBrtPona1 to 

current because du/dt. is 

effective current ‘Pi 
at higher values of Ib, the 

frozen in at an earlier time. 
For air, and most other simple gases, 
represents a transition point; 

Ib-.lOkA 
higher current beams 

are mostly current neutralized, while lower current 
beams are only weakly neutralized. 

If I rises to its 
k 

full value over a time long 
compared he temporal delay from the beam head to the 
pinch point, then the erosion rate and I become 
functions of the beam rise rate rather than fhe peak 

if the beam propagates far enough, the 
tQ.iin~“~IZIlm $ of I (t) eventually erodes away and 
Eqs. (8) and (9) beco e directly applicable. 

Gas Conductivity 

We have already had a number of occasions to 
refer to the evolution of [r, and this aspect of the 
physics also has a major effect on beam instabilities. 
At this point, we shall briefly consider the principal 
mechanisms that underlie plasma conductivity. 

The conductivity may be written n eu, where u is 
the electron mobility, determined in Eeneral by both 
electron-neutral (e-n) and electron-ion (Spitzer) 
collisions. Frequently a dense gas is only weakly 
ionized by a beam and e-n collisions dominate, in 
which case u is independent of n and only weakly 
dependent on temperature T (typfcally, u=l/JT ). 
Thus, u depends primarily 02 the ionization and ae- 
ionization processes that control ne, which increases 

rapidly from zero to n >1016. In addition to beam- 
collisional ionization:- avalanche ionization (i.e., 
ionization of atoms by plasma electrons which have 
been energized by macroscopic electric fields) may 
occur, particularly near the pinch point where large 
electric fields are present. De-ionization is usually 
due primarily to recombination, at least within the 
core of the beam. (In some gases, e.g., 02, 
attachment can be important at large radii or wherever 
~ayi~h:~l~:f~~l~nlow. This will be ignored here.) We 

equation governing the evolution of 
U: 

da/de = al(Te)Jb + y(Te)u - B(Te)u2- (10) 

In the front portion of the beam and out to one 
or two beam radii, beam-collisional ionization [the 
first term of (lo)] usually dominates, except possibly 
at the pinch point. In this case (and if we also 
neglect the T -dependence) the 
is identical ?o that of 

radial profile of u(r) 
J (r). Moreover, the plasma 

current J (r)=crE has a si alar profile, since Ea iS !I* 
only weakly depegdent on r within the beam. (See Eq. 
(11) below.] This approximation is frequently made in 
analytic studies, and greatly simplifies the analysis. 
Avalanche [the second term in (lo)] has two effects. 
Avalanche driven by E at 
central u(r) profile To 

the pinch point causes the 

destabilizing effect 
become narrower than Jb(r), a 

that will be discussed later. 
Avalanche driven by E in the very front of the beam 
produces a very broad low-level conductivity out to 
the large radius b, which has important consequences, 
e.g., the large inductive logarithms in Eq. (8). 
Further back in the beam, where recombination [the 
third term of (lo)] becomes important, u(r) becomes 
broader than J (r), which helps stability. We note 
that, in a corn $ lex gas such as air, recombination can 
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depend on water vapor content and complicated 
temperature-dependent chemistry effects, e-g., the 
formation of molecular complexes [12]. On a practical 
level, even the weak dependence of u on T can have 
significant effects, e.g., on hose instability (131, 
as discussed below. To model temperature-dependent 
effects, it is frequently convenient to assume that 
(in a diatomic gas) T is determined by a balance 
between ohmic heating &d energy loss to vibrational 
modes of the molecules. In this case, it can be shown 
that T is a function only of E/p, where E is the 
electrfc field and p is the gas density. We can then 
write the coefficients in Eq. (10) as functions of 
E/p. A summary of these coefficients is given in 
Refs. 13 and 14. 

We have assumed that the plasma conductivity is 
local, scalar, and is created instantaneously by beam 
collisions. In fact, beam-gas collisions do create 
high-energy secondary electrons (delta rays) which 
have long mean free paths. Although relatively few in 
number, these secondaries can have some effect in 
spreading and delaying conductivity, and in responding 
nonlocally to electric fields. It is also true that 
tensor conductivity can play some role if the net 
current is high or the beam radius is small, leading 
to strong magnetic fields. 

Beam Instabilities 

As a magnetically confined, highly ordered 
system, a self-pinched beam is subject to a number of 
instabilities, which are driven by two effects: (l)If 
there is a substantial return current I q -fI , then 
there is a repulsive magnetic force betwegn I 
As long as I and ‘b 

&nd 18. 
remain well aligned an8 more r 

less proport?onal to each other, this merely weakens 
the pinch in an orderlya;;yi but if perturbations lead 
to a separation of I the repulsive force can 
drive unstable growth of thg’ perturbations. This is 
the primary mechanism for all of the instability modes 
except hose. Each has a threshold value of f below 
which the mode is stable ]15]. (The hose mode is 
unstable even if f=O, but is further destabilized by 
non-zero return current.) (2)Even if I =O, symmetry- 
breaking distortions can drive locallyPdestabilizing 
magnetic forces. Finite plasma resistivity plays a 
key role here. Because afm, magnetic field lines are 
not frozen into the plasma, and instabilities can 
occur on the time scale for beam motion, rather than 
the much slower hydrodynamic time scale for the 
plasma. But because a#O, the field lines are subject 
to destabilizing phase lags as they try to follow beam 
distortions. This mechanism particularly drives the 
resistive hose instability, which is the most 
notorious of the beam instabilities. 

Fig. 1 BEAM INSTABILITIES 

The linearized normal modes of a beam can be 
characterized by a pair of quantum numbers (m,n), 
where m indicates e-dependence exp(ime), and n is the 
radial mode number, roughly speaking the number of 
oscillations within the beam radius. The first few 
modes, shown in Fig. 1, are the Imost important for 

pinched beams: 
a self-similar (1~~~~3:~n:~o~:~a~~X~~geo~od~~ero~~~~~ 
(m=O,n=2) is the axisymmetric hollowing mode, in which 
the beam density alternately hollows out and peaks on 
axis; (m=l,n=O) is the hose mode, in which the beam 
thrashes around more or less like a firehose, without 
a deal of internal distortion. The 
fila%Efition modes (m>2 or n)3) generally have a high 
threshold value of f- [15] and are believed to be 
stable for pinched beams, except in annular (usually 
rotating) beam equilibria. 

Axisymmetric Hollowing Instability 

The axisymmetric hollowing instability was 
discovered in computer simulations [14] as a 
particularly violent instability, leading to rapidly 
growing radial oscillations that destroy the beam only 
a few nanoseconds behind the pinch point. Computer 
simulations have provided a detailed, quantitative, 
and rather surprising picture of its nature. Figure 2 
shows the growth of the instability as a function of z 
and Z (used as independent variables in place of the 
usual z and t), and Fig. 3 shows the radial profile 
Jb(r,Q characteristic of the instability. 

Since the simulations show the instability in the 
large-amplitude nonlinear stage, where large radial 
oscillations are apparent, it was thought at first 
that this was basically a sausage instability, 
although hollowing of the beam profile is apparent in 
Fig. 3. However, when the beam profile was 
constrained to a self-similar shape, the instability 
disappeared, thus indicating that hollowing is an 
essential feature. Furthermore, a linearized analytic 
theory of the sausage mode [16] shows that instability 
is not expected for a beam injected into neutral gas. 
[Basically this is because beam perturbations create 
similar conductivity perturbations through Eq. (10). 
This effect inhibits spatial separation of Ib and I , 
and thus reduces the growth rate for all modes; ?t 
just barely suffices to stabilize the sausage mode.] 
Furthermore, when the avalanche term in Eq. (10) was 
artificially turned off, the instability disappeared. 
Finally, it was found that when E/p was extremely 
large (specified below), the instability turned off. 

Fig. 2. Ream radius a a.5 :I fuilctic>n Of : and 5 , 
showinr the large radial orcillat ions due to the 
hollou~ng instability. (7r01n l‘cf. 18) 

Fig. 3. Ream current density as R fmction of 3 
(the distance hehind the heam head] Tag fixed I, 
showing hollowing and peakinp. (From Ref. 1J) 

The essence of the hollowing instability is as 
follows. Behind the pinch point, where Ampere’s law 
(in its axisymmetric form) is valid, one can show that 
the electric field has the radial profile 
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EZ(r) c. ln/ (l+h2/a2)/(l+r2/a7) I. (11) 

E has a weak (logarithmic) maximum on axis, which is 
ugually ignored in XlalySeS. However, over a wide 
range of parameters, the exponentiation rate for 
avalanche ionization rates increase xahighpower (4 
to 6) of E/P. Thu?, 6, and also the plasma return 
c u L- re n t J = E [T, become 
the repuleive mzgnetic force 

strongly peaked there, and 
hollows out the beam and 

blows it out to large radius. This expansion reverses 
itself only because the t adial expansion of the beam 
current decreases the inductance L of the system. 
Roughly speaking, LIn tends to be constant, so the 
defocusing plasma current decreases, or may even 
r-everse itself so as to augment the pinch 117,181. 
The beam curltent then COlPiZS clashing back onto the 
a:iis, and the cycle is repeated with rapidly 
inrreasing amplitude. 

The key quantitative features revealed by the 
simulations are that the inatahility occurs, over a 
wide l-allge of densities, only if two conditions are 
met. First, f>50%, in qualitative agreement with 
prior analytic predictions [15]. This is easily 
understood : even if the L-eturn current flows in a 
profile that is very narrow conpared to the beam 
current , the pinch is destroyed overall if and only if 
.l > J,i2. Secondly, the 
p8int 7’ 

value of E /p at the pinch 
in air) must fall irto the rang: 

13 KV/m-torr < EZ/p < 50 MV/m-torr. (12) 

The lover limit on EZip ensures that avalanche is 
strong enough to play a significant role. The upper 
limit is due to the fact that, al though avalanche is 
vet-y strong at large values of E/p, it no longer 
increases I-apidly as a function of E/P. 

In o:tle~ to avoid the hollowing instability, it 
is thus necessary to keep the maximun- value of E 
betas! the lower limit of Eli . (17). (In gas at an? 
significant iractioll of atmosphel ic densi:y, the upper 
limit is not exceeded.) This can !>e accomplished in 
se\ieral {Jays: (1)Ry limiting ttle rise rate of Ib(t), 
SO that the curlent at the pillcll point is not above a 
vritival value. (2)By limiting the peak value of I . 
Eve11 if $!t) f i s es instantaneously, instabill y .I: 
“C?UIS (i:) all-) only if I, > ?OkA times the density in 
a tmosphel es, for beam La?Iii in the vi(,inity of lcm. 
(3)Jncreasing the beam radius. 

These conclusions were subsequently tested in an 
experiment performed on the IBEX electron beam 
facility at Sandia National Laboratories [19). The 
hollowing instability was clearly seen to occur at air 
densities below 80 torr, in quantitative agreement 
with predictions based on Eq. (12), and to turn off at 
higher pressures where EZ/p became too small. 

Hose Instability 

The resistive hose instability is the most 
important impediment to propagation of pinched beams. 
It is observed in nearly all beam propagation 
experiments, and has been studied extensively by means 
of linearized analytic theory as well as both 
linearized and nonlinear numerical simulations. The 
analysis indicates that the instability is always 
present for- a pinched beam injected into neutral gas, 
blot t!lat it can be minimized by limiting the beam dur- 
ation and L-educing the level of initial perturbation. 

Analytic studies of the hose instability have 
usual 1~ been based on linearized 
pertut-i;ations to an 

theory fol 
axially uniform beam equilibri\uz, 

i.e., tnkf Jboi;;;) independenF of i. Hose normal modes 
f(r, <)exp[ l(a+Rz/c)]. It may also be 

assumed that the equilibrium plasma curt-ent J (r,C) 
and iin the simple1 theories) conductivity opo(r, C) 
a:-e (I- independent, in which case the normal mode 
dependence reduces to f(r)exp[i(8c+wZ+Qz)/c] and a 

dispersion relation w(Q) is sought. Effects 
associated with the beam head and pinch point, e.g., 
low conductivity, space charge, and incomplete pinch, 
are usually neglected, and in this spirit the electro- 
dynamics are calculated simply from Ampere’s law 
(exceptions are Refs. 20,Zl). 

The earliest version of hose theory (the “rigid 
beam” model) assumed in addition that the perturbation 
of each “slice” of the beam consists of a transverse 
displacement by an amount Yexp[i(wC+Qz)], with no 
internal distortion. As a nearly exact consequence of 
the linearized Ampere’s law the vector potential 
A (r,z,C) is also displaced from the axis of symmetry, 
b$ an amount Dexp[ i(wC+Qz)], without internal 
distortion. The problem reduces to ODE’s, 

a2y/ az2 = Qg2(D-Y)/c2 (13) 

D + crl(aD/aC) = Y, (14) 

where ‘c =noa2/2c2 is the “dipole” magnetic decay time. 
Equatiohs (13) and (14) lead to a dispersion relation 

iWT = 1 -Q2/(k;-Q2), (15) 

which correctly shows that oscillation in 2 scales to 
X while growth in C scales to the ‘5 . 
iafinite growth rate predicted at Q+kk, 

However, the 
indicative of 

absolute instability in the beam frame, is incorrect. 

The crucial oversimplification in Eqs. (13)-(15) 
is the implicit assumption that all beam electrons 
oscillate at a single resonant betatron frequency, 
i.e., that the potential well pinching the beam is 
simply harmonic. This would be true for a flat-topped 
current profile, but the rounded profiles of J and J 
introduce anharmonicity, and therefore a dependence OF 
k on the amplitude of an electron’s orbit. When this 
fgature is introduced into the modeling, as was first 
done by using the “spread mass” formalism [ZZ], the 
dispersion relation exhibits a finite maximum growth 
rate. For example, Lee 1221 finds 

-iwrl=3x2-6x4+6(x4-x6)[in+ln(l/x2-l)], (16) 

where x=Q2/Q Equation (16) is illustrated in Fig. 
4, for a with no return current. Most 
significantly, the instability is convective backward 
in the beam frame; hence, it reaches a maximum 
amplitude at any given point in the beam and then 
decays. Thus, the hose amplitude can be limited by 
limiting the beam duration to a few growth lengths and 
by insuring that the beam is initially quiescent, so 
that hose modes have to e-fold many times. 

r: j ,i _1 1. W 5r1~~7-sior: TV! ii ioi. For l!;>~c j nstnhil i t\. 
from the sy:.ead 717~5 rvtl,~ 
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Subsequent to Lee’s pioneering work, hose 
modeling has been extended in many ways. More 
sophisticated macroscopic models [23], linearized 
Vlasov calculations [24], and simulations [17],[18], 
[23]-[ 251 have been used to treat beam dynamics. 
Plasma return current has been included and fou;tl:” 
be strongly destabilizing 1231,[241,[263. 
consistent treatment of conductivity evolution 
introduces a variety of effects. A fully analytic 
linear theory has been developed which includes the 
linear increase of equilibrium conductivity ao(r,<) 
with < due to beam-collisional ionization of the gas; 
in this case, instability grows as a power p of <, 
rather than exponentially 1241. Since p is inversely 
proportional to oo, growth is most rapid just behind 
the pinch point. (The formalism is invalid ahead of 
the pinch point). Furthermore, dipole perturbations 
of the beam induce dipole perturbations of 0 through 
Eq. (10). This significantly reduces the growth rate 
in the presence of plasma return current, particularly 
for low frequency modes, by inhibiting separation of 
the beam current from the return current [24]. One 
consequence of this is that the hose growth rate 
typically decreases with increasing I 

P’ 
as shown in 

Fig. 5. This is the net result of hree pieces of 
which favors higher currents; (ii) 
effect of current neutralization 

favors lower currents ; (iii) the effect of dipole 
conductivity swings the balance to higher currents. 
Even the T -dependence of the inverse 
dependence o? (T on E/p, can bbi tnEi:ded in a fully 
analytic theory 1131; since E is largest at the 
pinch point and steadily decregses thereafter, this 
further accentuates the tendency for hose to grow 
rapidly at the pinch point and very slowly further 
back in the beam. 

rig. 5. Prak hose growth rate as a flunction of 
beam current. frrom Ref .?4) 

Numerical simulation has been essential to 
detailed understanding of hose [17],[18],[24],[25]. 
It permits self-consistent treatment of the radial and 
< dependence of beam equilibria, of phe;;!n;;;dnez;dti; 
pinch point where Ampere’s law is ’ ’ , 
nonlinear effects. Conversely, the hose instability 
has stimulated the development of an innovative 
simulation model [24],[25]. One conclusion from these 
studies is that avalanche ionization at the pinch 
point is lethal, strongly driving hose as well as 
axisymmetric hollowing, and for similar reasons. 

Conclusions 

We have seen that propagation of beams in dense 
gases is limited in varying ways by energy loss, 
radial expansion, nose erosion, and hose and hollowing 
instabilities. For the most part, these limitations 
are minimized by going to higher energies and 
currents, fatter beams, shorter pulses, and beams 
which are more quiescent at injection. 
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