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ABSTRACT 

A filtering procedure for computed tomography is 
formulated. It is derived from the general regula- 
rization theory and contains an adjustable regulari- 
zation parameter. The latter can be found self- 
consistently and corresponds to a given noise level, 
The method is illustrated by applying it to the re- 
construction of phantoms in computer experiments, 

_-__ 

Improvement of resolution in image reconstruction 
from projections requires development of refined fil- 
tering procedures. It is our purpose to present here 
such a filtering procedure based on the regularization 
method1-4, The method is specially designed to handle 
ill-posed problems, i.e. those that tend to instabi- 
lity when noisy data are used. When applied to a 
deconvolution problem the said method is an approxi- 
mation to Wiener’s optimal linear filtration. 

The common formulation of the Fourier-synthesis 
method in Z-D image reconstruction is as follows’: 

f(r,$) = jB 7 IklG(k,O)exp[2nikrcos($-0)]dkd0 (1) 
0 -co 

Here f(r,$) is the object density function in po- 
lar coordinates and G(k,B) the one-dimensional Fourier 
transform of the projection g(R,O) of the object onto 
a line which forms an angle 8 with the polar axis. 

The regularization approach is commonly applied to 
integral equations of the first kind. It is particu- 
larly effective for convolution-type equations where 
the Fourier transformation can be used. In the case 
of computed tomography a convolution-type equation 
appears in the filtered summation-image method and it 
can be presented in the Fourier plane as follows: 

Wx,kyl = Wkx,ky) (21 

Here F(k ,k ) and S(k ,k ) are the Fourier transforms 
of the ofijext density,‘fuj(ction and of the summation 
image; k = (k* + k2) ‘*. For details, see for example, 
Ref. (6). Ba&ettYet ala6J7 proved that the one- 
dimensional filter function in the Fourier-synthesis 
method is equal to the two-dimensional filter in the 
filtered summation-image method provided that the po- 
lar radius in the Fourier plane is treated as a one- 
dimensional variable. The two-dimensional filter is 
assumed to be circularly symmetric. Eqs. (1) and (2) 
illustrate this theorem. Any additional filtering 
applied to improve signal-to-noise ratio is governed 
by the same theorem. 
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A regularized solution of a two-dimensional convo- 
lution-type equation was obtained by Goncharskii et 
ale8 The Fourier transform of their regularized 
solution is : 

Fa(kx >ky) = k.S6(kx,ky)/[l + uk2(1+ak4)] 

Here the notation S6(k 
S(k ,k ) to underline x’ky)tkz yi:,” :hnzieFt Pf a 
Fo&ier transform of an error-containing function so 
that 

I lS,(X,Y) - Strue(x’Y) II 2 6 (4) 

The coefficient a is related to a Sobolev norm chosen 
in the object space, It is taken here to be equal to 
unity, The object diameter is also assumed to be 
unity. 

The inverse Fourier transform of Eq. (3) yields 
the approximate solution fo(x,y) . According to 
Goncharskii et al, 8 it converges uniformly to the 
exact solution when 6 + 0 . In Eq. (3) o is a positive 
parameter inherent in the regularization method and 
is called the regularization parameter. It defines 
the degree of smoothing in the approximate solution9 
and is a function of the error 6. It can be proved 
that c1 is a continuous and monotonically growing 
function of 6. (a -+ 0 when 6 -+ 0). 

On the basis of the above we can proceed with our 
main objective i,e., to introduce the regularization 
procedure into the Fourier-synthesis method. According 
to Barrett’s theorem, the filter function in Eq. (3) 
can be substituted into Eq, (1) as follows : 

f,(r,$) = 7 7 (k]G,(k,0)/[l+ak2(1+k4)] X 
0 -00 

x exp[2nikrcos($-O)]dkdO 

In this last case the 
defined as : 

error for the data should be 

In lm [g&W - gtrueW012~d~ 2 d2 
0 -a, 

(51 

(6) 

In model calculations 6 can be evaluated directly 
from Eq. (6). However, in the case of real data some 
statistical estimation of 6 is necessary. The use of 
difference tables of the datalpr the estimation of 
the noise level may be useful , Alternatively the 
range of the samples can be used. 

We evaluate the regularization parameter ~1 by the 
so-called residual error methodg. By this method c1 
is chosen to satisfy the following equation: 

T aJ n ?. 
J I Ig,(W - gs(R’9)]‘dkd0 = 6‘ (7) 
0 -03 
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Here g (R,0) is the “reconstructed experimental data” 
as compated from f (r,$) , ft follows from Eq, (7) 
that the regularizgtion parameter must be chosen to 
match the precision of the data. It represents a cer- 
tain compromise between over-smoothing (big o’s) and 
noisy solutions (small o’s). 

We can now transform Eq. (7) into the Fourier 
domain in order to enhance effectiveness of the 
computation of a. Using Plancherel’s theorem we 
have : 

1’ ,m [G$,e) - G&k$)]*dkdB = g2 
0 -co 

From Eqs, (1) and (5) it may be seen that : 

(8) 

Go(k,B) q G$k,@/[l + ok2(l+k4)] (9) 

The substitution of Eq. (9) into (8) finally yields 

? im 02k4(1+k4)*1G,(k,0) I* / 

/[l + ak2(1tk4)]*dkd0 = 6* (10) 

This is our 
parameter a 

final equation for the regularization 

Eqs. (5) and (10) define a noise-matched fil- 
tering procedure for a 2-D image reconstruction 
from projections in the framework of the Fourier- 
synthesis method. The procedure is based on the 
application of the regularization method to the 
computation of the filtered summation-image as a 
two-dimensional deconvolution problem. The known 
connection between the filtered summation-image and 
the Fourier-synthesis methods enabled us to apply 
the regularization procedure to the Fourier-synthesis 
method. 

Computer Model Calculations 

Four examples of computer-simulation of the re- 
construction of mathematical phantoms by the regu- 
larized Fourier-synthesis algorithm are presented 
in Figs. (la-d), The phantoms, as functions of two 
variables, were assumed to possess rotational sym- 
metry. Their central cross-sections are represented 
by full lines in the figures. The reconstructed 
phantoms are given by the broken lines. The pro- 
jections g(R ,0) were calculated from the mathema- 
tical phantoms. A gaussian noise with a standard 
deviation proportional, at each point, to the value 
of g (a ,e) and with a zero mean was added to the 
projections. The noise level of the data can thus 
be characterized by a single number: the percentage 
error, The reconstructionwas carried out on a 
2048X2048 lattice. The projections were sampled in 
2048 points along the diameter for the variable R , 
(18 equally spaced views were taken for 8 .) This 
choice was dictated by the fact that the computations 
were performed on the basis of Eq. (5) where a 
Fourier transform had to be performed on a function 
with a discontinuity in its first derivative, The 
value of 6* was calculated by means of Eq, (6) and 
was’ taken as three times the integral on the left 
hand side of Eq. (6). This factor was chosen some- 
what arbitrarily; smaller factors resulted in too 
small ~1’s and led to noisy solutions, while fac- 
tors bigger by 1 or 2 did not influence substan- 
tially the reconstructed picture. The regularization 
parameter cx was calculated from Eq. (10) by suc- 
cessive approximations as follows : an initial value 

of c1 was chosen and substituted into the left-hand side 
of Eq, (10). If for*example, 
exceeded the given 6 

the computed expression 
it meant that the chosen value 

of a corresponded to a bigger value of the right-hand 
side of Eq. (10) and vice versa, The next trial was 
then performed with a smaller o since as mentioned 
before, o is a monotonically growing function of 6. 
This procedure satisfactorily converges to a single 
solution provided that 6 is not too big, 

It may be noted from Figs. (la-d) that the recon- 
struction is reasonably good for a O,l% noise level, 
The fine details of the picture are reconstructed and 
there is practically no high frequency noise present. 
With a 0.5% noise level (Fig. lb) almost all fine de- 
tails are lost and only the general features of the 
picture are preserved. Nevertheless the reconstructed 
picture remains practically noiseless. 

If a good estimation of the regularization para- 
meter cx is available from previous similar computa- 
tions or from appropriate computer experiments, it is 
not necessary to solve Eq. (10). Model calculations 
indicate (see Fig. la,c,d) that the regularization 
parameter a is mostly dependent on the noise level 
and is to some extent insensitive to changes in the 
structure of the objects to be reconstructed. 

In general it can be stated that the regularized 
Fourier-synthesis method provides a refined filtra- 
tion operation for reconstruction problem from noisy 
data. The filtration is based on the use of a para- 
meter that must be adjusted to the noise-level of the 
data. This adjustment can be performed automatically 
so that the whole method is self-contained. 
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1. Fig. Reconstructed phantoms are given by broken lines. The central cross-sections of the 
original phantom are given by full lines. The insertions represent enlarged sections 
of the phantoms. 
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