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FIELD PROCESSING METHODS DEVELOPED FOR A SEPARATED-SECTOR CYCLOTRON 

Gerhard F. Burdzikt 

Summary 

This paper describes three numerical techniques which 
were developed during beam orbit studies undertake 
the separated-sector cyclotron of the NAC project’ . f 

for 

The techniques are concerned with the numerical manipu- 
lation of field map data. Firstly, a method is given 
for interpolating the field and calculating its deriva- 
tives more accurately than is possible by conventional 
methods, in regions where the field varies rapidly and 
the data are not closely spaced. The technique consists 
of fitting a suitable analytical function f(x) to the 
field distribution Bi = B(Xi) so as to minimize the fourth 
differences of the distribution Bi - f(Xi). The distri- 
bution Bi - f (xi) is then smooth enough for conventional 
methods to be applied. Secondly,wedescribe amethodfor 
isochronizing field map data, the method being applicable 
to magnets which have trim-coils with edge contours 
similar to the shapes of the equilibrium orbits within the 
set tars. Thirdly, we discuss amodificationof an alter- 
native isochronization technique 2’3), this method being 
appiicnhle to magnets with trim-coils having edges which 
dre arrs of circles concentric about the centre of the 
cyclotron. 

Introduction 

During the early phases of the NAC project it was decided 
that for design study purposes realistic numerical field 
mapsofthe cyclotron magnets wouldbe obtainedbymeans 
of accurate field calculations . 4) In the caseofthe sec- 
tor magnets of the separated-sector cyclotron (SSC) the 
map data are values of the fieldinthemedianplaneatthe 
nodes of a cylindrical grid. Boththememory requirements 
and the processing time needed to run the field calculation 
programs placed limits on the number of node points that 
could be used, and the first sector magnet fields we?-e cal- 
(-11: ntc cl vith rnt!icjl and azimutl!nl spacings br and A@ of 73 mm 
and lo respectively. On the other hand, a sector magnet 
pole gap of 6Ommhadbeenchosenonthe basis of focusing 
requirements. Since both !lr and r.Aii (at large radii) are 
larger than the pole gap, themagnetic field at themagnet 
edge is represented by relatively few map data. A typical 
rndi,ll distributirln in the vicinity of the magnet edges is 
shown in figure 1. The azimuthal distributions at large 
radii display ,2 similar rapid variation of the field at the 
magnet edge. When conventional techniques for interpola- 
tingor calculating derivatives are applied to such distri- 
butions, they fail to give accurate results:- cubic 
splines fitted to the radial distributions tend to oscil- 
late strongly in the vicinity of the field edges. 
Similarly a Fourier decompositionofthe azimuthaldistri- 
butions followedbya reconstructionofa smoothed field 
from the Fourier expansion formulainwhich Lanczos 
smoothing coefficients areincluded,hasthe effect of 
broadening the field edge and decreasing laB/aO!. 

A Method of Interpolating and Calculating theDerivatives -----T--- --~ -7------- - --- 
of a Rapldly Varying Field -~ 
The reason why conventional techniques fail when used on 
the abovementioned type of distribution becomes clear when 
the n-th central differences EnBi of the distribution Bi 
are calculated: the&“Bi-values donotbecome small but 
increase as n is increased. Ifonewishes to represent N 
equally spaced values of B. of a smooth functionby an 
(n-I)th order polynomial (&>n) then the n-th differences 
fi”Bi should become (vanishingly) small everywhere along 
the distribution. Therefore, for the given spacing, the 
field edges cannot be representedbya polynomial, 

The basis of the method reported here is thatasuitable 
function f(x) (where x represents r or 0) canbe fitted 
~~~_-~-~----------~----------~--~-~--~~~-~--~~--~-~~~-- 
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Fig. 1: Typical radial distribution in the vicinity 
of the magnet edges. 

to the distribution Bi in surh a way that the distrihu- 
tion of the difference Bi - f(xi) is smooth. Thr 1 at ter 
distributionwill be smooth if the higher order di!‘fercnrcs 
en(B i - fi) are (v:~nishi.ngly) small, Tn piirti(‘ulCir, if ;I 
collocating cubic spline s is to be fit ted to the distribu- 
tion Bi-fi, and if the spline function is to 11~7 non- 
osci 1 latory, thpn the quantities 

d3si/dXilx 
i 

+o - d’si- ]/dx’lsi-(l 

(wherr Si and “i-1 are the pieccl;ise cubit polyrlomials to 
right and left of the nodes xi) shc7uld bc sm,ill f(lr ,111 
X’ . This condition is met if the fourth tlifferenct)s 

E4i(Bi - fi) are sm,ll I ev~~rywhCr~~. Thcrt~fori~ wt’ ii t tlitt 
function f(x) to the distribution Bs so as to minimize 
the sum of the squares of the follrth dfffcrence:: ‘“(Bi - fi). 
‘The function f(X) will rt>ducc F4(1<i- fi) <it tlli) fii>l(I 
edge only if its shape is a good approximatic~n of the 
field edge shnpc. The formfni~ti~r wc hat,? r~ll(~hi~11 t I’ 
describe the field edge j is: 

s;(x) = [I 1 + ‘Cl; + (2/n)i_l:i tan-‘] (X-X;): (S-S;)]-’ (1) 
J J J J J 

where (I. and &. are mcasurcs of the width and pclsi t ii)n of 
the field edge! and “j and Y art> introduced to provide 
some asymmetry, The plateau regions j of the distribu- 
tion are described by polynomials 

The function f(x) is then constructed in n modular 
fashion from the functions P. and g., e.g., for thi> 
radial distribution with two’field Jdgrs shcwn in fil:. ?: 

f(x) = P,q + 1’1 (Q - 81) (2) 

In practice only those parameters of f(s) khi(‘h m,itcJriall) 
affect the F4(Bi - fi) values are varied* thev are is - 
and x* of ttip formfactors 6.. 
polyn:mials P e 

The cot ;fl< z;nts ifJ$’ I ’ _* > i 
are cnlculatJd dirilctly frcm the d,lt,i of 

the plateau rigions and are then clam cd, whcre<is II i b 
found by trial and error. fi c 

have been minimized, we fit 
When tl:e (B; - fl;j-va?uef 

a cubic splln~ s IOI 1~~dl~11 

as well as azimuthal distributions) to the distribution 
Bi-fi, by means of a least-squares methodduetn 
Dierckx’) . An interpolation of B at point x is then 
given by B(x) = S(X) ff(x) and the derivative of B at x 
by &B/6x = dsfdx + df/dx. 
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Fig. 2: Illustration of the manner in which the 
function f(x) is chosen for aradialdistribution 

The technique gives results which are superior to those 
of conventional methods when the spacing of the dataas 
described above pertains. When the dataarespaced 
sufficiently closely, conventionalmethods andthepresent 
one agree very closely. Figure 1 shows atypical fit of 
the function f(x) to radial dataandthe resulting smooth- 
ness of the (Ri - fi: distribution. Figure 3 shows the 
derivatives 6B/&% obtained by the Fourier analysis 
method (circles) and the present method (solid line) for 
a typical azimuthal distribution. 

A Simple Method for Isochronizing Magnetic Field Maps 

Most published methods dealing withtheisochronization 
of numerical field maps 273) assume that the field is varied 
as a functionof radius only, andthatthe azimuthal field 
profiles remain constant. These methods apply tomagnets 
in whichtheinnerandouter edgesofthe trim-coils are 
arcs of circles concentric about thecentreofthemachine. 
The trim-coils of the SSCsector magnets,however, are con- 
toured to the same shape as the equilibrium orbits (e.0.) 
within the sectors, i.e., their radii of curvature agree 
with those of thee.o.‘s within the sectors. It follows 
that both the radial and azimuthal field profiles will 
change if the trim-coil currents are varied. We have 
developed anisochronization method which will approxi- 
mately take the azimuthal variation into account: 
essentially the same methodhasbeen developed indepen- 
dently at GANIL6). The basic assumptionof the method 
is that the field on the e-o. is varied by a constant 
fractionof its local value. Thus if B(s) is the field 
value at a distance s along the e.o., a variation of the 
trim-coil current causes a variation dB(s)of the field 
such that dB(s) /H(s) = db is a constant for all s along the 
e-0. The change d-r in the orbital period T is then 
related to the fractional change db by the equation 

drl-r = - (l/y*>db, (3) 

‘y being the relativistic ratio of total to rest energy. 
Equation (3) is anexactresult. The advantageofvarying 
the field in this manner is that the shape of an e-0. at a 
particular radius does not change duringisochronization. 
Equation (3) isnow assumedtoholdforfinite changes 
AB(s)/B(s) = b of the field on the e.o. For the i-the.o. 
we can write, therefore: 

bi = -yi2Ai-i/-ii = -‘ii* (To - pi) /‘i (4) 

where pi is the orbital period of the i-th e.o., and b; 
the fraction with which, to first order, the field on the 
e.o. mustbeincreasedto isochronizeit to the period T, 
However, bi applies to the field on the i-th e.o. andnot 
at the nodes of the grid. To calculate the fractional 
changes b applicable at the nodesweproceedas follows: 

a) We calculate the bi-values of me.o.‘s, evenly dis- 
tributed over the radial range within which 

AZIM ANGLE 8 
Fig. 3: Derivatives of an azimuthal distribution at 

the magnet edge. 

isochronismis desired,mnormally being larger than 
the number ofradialnodes enclosed within the range. 

At every nodal value of the azimuthalanglethe bi 
are treatedas dependent variables of the radius 
values ri of the e.o.‘s at that angle (see fig. 4). 
A cubic spline is fitted to bi in a least-squar s 
sense, 8 accordingtothe prescription of Dierckx , 
so as to average out errors in bi introduced by the 
numerical calculations of Ti’ 

For radial node values Rj which fall between the 
radius values rl 
orbits, 

and rm of the inner-andoutermost 
the be-values at the nodes are takentobe 

the values of ‘the spline functions,viz., 
For node radii Rj <rl or R. >rm the bj are 

bj=s(R.). 
calcula 11 ed 

byareasonable extrapolat!ionof the spline function: 
the possibilities incorporated in our computer 

programare shown in figure 4. 

We find that the method gives excellent results, pro- 
vided that the map data are reasonably smooth (i.e., do 
not oscillate), Usually it is possible to reduce Crlr 
withintwoorthree iterations to 2 x lo-’ or less, vhile 
the cumulative deviationfromisochronism anywhere in the 
isochronized region is of the same orderofmagnitude. 

Modified Alternative Method of 1sochronizi.g Field Maps 

The original isochronization program written within our 
groupwas basedon the methodinuse at SIN’), Thismethod 
assumes that the fieldisvaried as a functionof radius 
only while the azimuthal profiles remain unchanged. The 
radial change within which isochronism is desired is 
dividedintoanumberof intervals n and the average field 
within the intervals is varied. The change dri in the 
orbital period pi of the i-th e.o. is then expressible in 
terms of the variation A~j of the average field Bj by 
the matrix equation 

(AT/T)i Y -(I/vii) ff Aij(A~j/~j) 
j=I 

where the matrix elements A.. are foundby numerical 
integration. If inaddition VI ereexistnvaluesof 
(AT/T>, the matrix equation (5) canbe inverted to yield 
values of AZ/-I? which to first order hould isochronize 
the field. In common with others”$ we have found that 
the inversionofequations (5) very often gives very 
unstable results, The instability of the solutions can 
be traced to two factors: 

4 unless the relative positions of thee.o.‘s and the 
radial intervals are chosen very carefully, the 
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factors g. 
-4 

are chosen for the modified 
isoclironl ation method. 

b) both the matrix elements Aij and the orbital periods indicates the values of t+ wliirh minimizes 0, It is 
Ti contain errors arising from the approximat i ens 

inherent in numerical integration. 
easy to show by differentiating Q,, with respect to h;, 
that the least-squares condition leads to the followin’f 

We have modified the method so that the problems asso- set of approximate equations: 

ciated with it are largely eliminated. As before, the 
k~ICi~, Ai j 

il 

radial range within which isochronism is desired is A;,() l)k = -i:, ti A., 
’ .I (9) 

divided into a number of intervals II, except that the 
interval j is represented by formfactor g.(r) which we 
choose to be the cubic B-spline function J7) (see fig. 5). or i 5, “Ijk bk = N. \ J 

j = I,2 . . . . . . .I] 

The knot-s of the B-splines are usually chosen to coin- wliil~h (‘a11 ht) inviJrted to yiclld values of b,. If one 
tide with the nodes of the radial grid. If the magnetic 
field is written in the formB(r,R) = B,(r)*f(r,Q), where 

m ” 
IlOt.~S tll<lt tllc clia~onal t?l~lll~~IltS ~lj j = ii71 rl i’j refer to 

Bp(r) is the radial distribution at ti”= Fi 
P 

(e.g., on ttle the contributions of a11 E,O.‘S to a single interval j, 
11111) ,lnd f(r,O) describes the azimutha behnviour of the whereas the off-iii agonnl elements 
field, t!len the radial distribution B,(r) is varied ni 
according to the prescription ~ljl; = ii-l iZi,i A’ 11~ 

(0) 

where the coefficients b + are the relative amplitudes of 
the formfactors gj. TheJformfactors ensure that Be(r) 
varies smoothly with r in any isnchronizntion process. 
For <lny position 8 nl~g ln E.(?. lip,> change ilB(s) in the 
field is tilus given by 

11 

LIB(S) = [Blo (r) -B,(r)] f(s) = B(S) I: bj gj(r) (7) 
j=l 

and the expression for the fractional change ‘,IT/;)i of 
the i-th e.o. becomes T 

refer 10 c0utril)utic~ns to two at most partidl 11 over- 

lapping intervals j and k, one can deduce that the spacing 
of the intervals must not be much smaller than the radial 
interval occupied by an e.n. in the sector, if the 
diagonal elements are to dominate. Also the inner- and 
outermost intervals must straddle those rei:i.ons c-i.’ I- 
of the inner-, and outermost e.n.‘s 1 nndmfor which the 
magnetic field on the orbits (B(sl) and H(s,,)) will con- 
tribute significantly to the upper integral of equation 
(8). Under these conditions the determinant of )I is not 
small, and the inversion of equation (9) yields stable 
and we1 l-behaved vnlucs of bk. 
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