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FIELD PROCESSING

METHODS DEVELOPED FOR A SEPARATED-SECTOR CYCLOTRON

Gerhard F. Burdzikt

Summary

This paper describes three numerical techniques which
were developed during beam orbit studies undertakesl for
the separated-sector cyclotron of the NAC plroject1 .
The techniques are concerned with the numerical manipu-
lation of field map data. Firstly, a method is given
for interpolating the field and calculating its deriva-
tives more accurately than is possible by conventional
methods, in regions where the field varies rapidly and
the data are not closely spaced. The technique consists
of fitting a suitable analytical function f£(x) to the
field distribution Bi=B(xi) so as tominimize the fourth
differences of the distribution B; - f(x{). The distri-
bution B; - £(x;) is then smooth enough for conventional
methods to be applied. Secondly, we describe amethod for
isochronizing field map data, the method being applicable
to magnets which have trim-coils with edge contours
similar to the shapes of the equilibrium orbits within the
sectors. Thirdly, we discuss amodificationof an alter-
native isochronization techniqué® ¥, this method being
appiicable to magnets with trim-coils having edges which
are arcs of circles concentric about the centre of the
cyclotron.

Introduction

During the early phases of the NAC project it was decided
that for design study purposes realistic numerical field
maps of the cyclotron magnets would be obtained by means
of accurate field calculations® In the case of the sec-
tor magnets of the separated-sector cyclotron (SSC) the
map data are values of the field in the median plane at the
nodes of a cylindrical grid. Both the memory requirements
and the processing time needed to run the field calculation
programs placed limits on the number of node points that
could be used, and the first sector magnet fields were cal~
~ulatedwith radial and azimuthsl spacings Ar and A8 of 73 mm
and 1© respectively. On theother hand, a sector magnet
pole gap of 60 mmhad been chosen on the basis of focusing
requirements. Since both Ar and rAf (at large radii) are
larger than the pole gap, the magnetic field at the magnet
edge is represented by relatively fewmap data. A typical
radial distribution in the vicinity of the magnet edges is
shown in figure 1. The azimuthal distributions at large
radii display a similar rapid variation of the field at the
magnet edge. When conventional techniques for interpola-
ting or calculating derivatives are applied to such distri-
butions, they fail to give accurate results:~ cubic
splines fitted to the radial distributions tend to oscil-
late strongly in the vicinity of the field edges.
Similarly a Fourier decomposition of the azimuthal distri-
butions followed by a reconstructionof a smoothed field
from the Fourier expansion formula inwhich Lanczos
smoothing coefficients are included, has the effect of
broadening the field edge and decreasing |9B/35[,

A Method of Interpolating and Calculating the Derivatives
of a Rapidly Varying Field

The
the

reason why conventional techniques fail when usedon
abovementioned type of distribution becomes clear when
the n-th central differences GnBi of the distribution By
are calculated: the SnB]-—values do not become small but
increase as n is increased. If onewishes to represent N
equally spaced values of B. of a smooth function by an
(n-1)th order polynomial (N>n) then the n-thdifferences
8MB. should become (vanishingly) small everywhere along
the distribution. Therefore, for the given spacing, the
field edges cannot be represented by a polynomial.

The basis of the method reported here is that a suitable
function f(x) (where x represents r or §) canbe fitted
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Fig., 1: Typical radial distribution in the vicinity

of the magnet edges.

to the distribution By in such a way that the distribu-
tion of the difference B; - f(x{) is smooth. The latter
distributionwill be smooth if the higher order differences
SM(B; - £;) are (vanishingly) small, In particular, if a
collocating cubic spline s is tobe fitted to the distribu-
tion B; - f;, andif the spline function is tobenon-
oscillatory, then the quantities

d’s;/dx’

3

- desi _ 1/'dx % -0
(vhere s; and s{| are the plecewise cubic polynomials to
right and left of the nodes x;) shouldbe small for all
X;. This condition is met if the fourth differences
5L(Bi~ f;) are small everywhere. Therefore we fit the
function f(x) to the distribution B: so as to minimiz
the sumof the squares of the fourth differences i’:L(Bi - £,
The function f(x) will reduce v"EL(Bi— f:) at the field
edge only if its shape is a good approximationof the
field edge shape., The formfactor we have chosen to
describe the field edge j is:

xi+o

g (x) = [1+{o;+ (2/MB: tan 'y (x-%x)} (x - (n
J J 1 ] ]
where . and x, are measures of the width and pesition of

the fietd edge; and BJ and v are introduced toprovide
some asymmetry. The plateau regioms ] of the distribu-
tion are described by polynomials
n. .
> ( = 7) e S
IJ(X) 1 apx
k=0

The function f(x) is then constructed in a modular
fashion from the functions P. and g., e.g., for the
radial distribution with two’field ddges shown in fig. 2:
£(x) = Pogy + Py(gy - gp) (2)
In practice only those parameters of f(x) whichmaterially
affect the 'fb(Bi~f<) values are varied; they are a., B:,
and x; of the formfactors g:. The coefficients of the
polynomials P: are calculatéed directly from the dataof
the plateau régions and are then clamped, whereas vy is
found by trial and error. When the f*(Bi - f.)-values
have been minimized, we fit a cubic splines ](,fo‘:‘ radial

as well as azimuthal distributions) to the distribution

B; - f;, by means of a least-squares method due to
+ 5 . . . .
Dierckx” An interpolation of B at point x is then

given by B(x) = s{x) +f(x) and the derivative of B at x
by 6B/8x = ds/dx + df/dx.
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Illustration of the manner in which the
function f(x) is chosen for a radial distribution

Fig. 2:

The technique gives results which are superior to those
of conventional methods when the spacing of the data as
described above pertains. When the data are spaced
sufficiently closely, conventional methods and the present
one agree very closely. Figure 1 showsatypical fit of
the function f(x) to radial data and the resulting smooth-
ness of the (B, - f;} distribution. Figure 3 shows the
derivatives §B/48 obtamed by the Fourier analysis
method (circles) and the present method (solid line) for
a typical azimuthal distribution.

A Simple Method for Isochronizing Magnetic Field Maps

Most published methods dealing with the isochronization
of numerical field mapsz’” assume that the field is varied
as a function of radius only, and that the azimuthal field
profiles remain constant. These methods apply to magnets
in which the inner and outer edges of the trim-coils are
arcs of circles concentric about the centre of the machine
The trim-coils of the SSC sector magnets, however, are con-
toured to the same shape as the equilibrium orbits (e.o.)
within the sectors, i.e., their radii of curvature agree
with those of thee.o.'s within the sectors. It follows
that both the radial and azimuthal field profiles will
change if the trim-coil currents are varied. We have
developed an isochronization method which will approxi-
mately take the azimuthal variation into account:
essentially the same method has been developed indepen-
dently at GANIL®) The basic assumption of the method
is that the field on thee.o.is varied bya constant
fractionof its local value. Thus if B(s) is the field
value at a distance s along the e.o., a variation of the
trim-coil current causes a variation dB(s) of the field
such that dB(s)/B(s) =db is aconstant for all s along the
e.o. The change dT in the orbital period T is then
related to the fractional change db by the equation

dar/t = -1/ db, (3)

v being the relativistic ratio of total to rest energy.
Equation (3) is anexact result. The advantage of varying
the field in this manner is that the shape of ane.o. at a
particular radius does not change during isochronization.
Equation (3) is now assumed to hold for finite changes
AB(s)/B(s) =b of the field on thee.o. For the i-the.o.
we can write, therefore:

= L 2AT. /T, =
bi ¥i “‘1”1

-y T (4
where T; is the orbital periodof the i-the.o. and b,
the fraction with which, to first order, the field on the
e.o. must be increased to isochronize it to the period T.
However, by applies to the field on the i-the.o. and not
at the nodes of the grid. To calculate the fractional

changes b applicable at the nodes we proceed as follows:

a) We calculate the b:-values of me.o.'s, evenly dis-
tributed over the radial range within which

o FOURIER METHOD
— NEW METHOD
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Fig. 3: Derivatives of an azimuthal distribution at

the magnet edge.

isochronism is desired, mnormally being larger than
the number of radial nodes enclosed within the range.

b) At every nodal value of the azimuthal angle the bg
are treated as dependent variables of the radius
values rj of thee.o.'s at that angle (see fig. 4).

A cubic spline is fitted to b:; in a least- Sq\ldl’?s
sense, according to the ptescmptlon of Dierckx®

50 as to average out errors in b; introduced by tne
numerical calculations of Tj.

¢) For radial node values R: which fall between the
radius values ry and r  of the inner- and outermost
orbits, the b,-values at the nodes are taken to be
the values of "the spline functions, viz., u =gs(R:).
For node radii R;<rjorR.>rp the b: are calcula%ed
by a reasonable eXtrapolation of the spline function:
the possibilities incorporated inour computer
program are shown in figure 4.

We find that the method gives excellent results, pro-
vided that the map data are reasonably smooth (i.e., do
not oscillate). Usuallyit is possible toreduce AT/T
within two or three iterations to 2 x 107° or less, while
the cumulative deviation fromisochronism anywhere in the
isochronized region is of the same order of magnitude.

Modified Alternative Method of Isochronizing Field Maps

The original isochronization program written within our
group was based on the method in use at SIN? This method
assumes that the fieldis varied as a function of radius
only while the azimuthal profiles remain unchanged. The
radial change within which isochronism is desired is
divided into a number of intervalsn and the average field
within the intervals is varied. The change dr; in the
orbital period T; of the i-the.o. is then expre531ble in
terms of the varlatlon AB: of the average field B i by

the matrix equation !
n -
A/t = -(1 T A;.(AB./B.) 5)
(t/0; = QT Ay (BB (5)
j=1
where the matrix elements A.. are found by numerical
integration. If inaddition t]nere exist nvalues of

(At/1), the matrix equation (5) canbe inverted to yield
values of AB/B which to first order ghould isochronize
the field. In common with others®” we have found that
the inversionof equations (5) very often gives very
unstable results, The instabilityof the solutions can
be traced to two factors:

a) unless the relative positions of thee.o.'s and the
radial intervals are chosen very carefully, the
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cubic spline to the calculated b -values.

determinant of A is very nearly zero, i.e., the
matrix is ill-conditioned for inversion. The
resulting solutions AB/B are then very sensitive to
small changes in AT/

)

b) both the matrix elements A;. and the orbital periods
T; contain errors arising ~from the approximations
inherent in numerical integration.

i

We have modified the method so

R,

ciated with it
radial range within which isochronism is desired is
divided 1rto a number of intervalsn, except tndt the

renres
repres

.g - on the

D D o~

by g;(r)] (6)

where the coefficients b: are the relative amplitudes of

the formfactors g:. The formfactors ensure that Bc(r)
J . . \ . )

smoothly with r in any isochronization process.

AB(s) in the

varies
For any position s along ane.o. tha change
field is thus given by

AB(s) = [B') (r) =B (r)] £(s) (7
and the oxnression for the fractienal change ¢ of
and the expression for the fracticonal change ¢ of
the i-th e.o. becomes

n i
s f B(s:) g: (r:)ds:]b.
Ar) .50 17931 147]
FE1% PR Tl (8)
SV I
1 [ ( Bs:) d5:1
L) (s;) id
0
8
= I A,.b,
o 117
1=1

where the subscripts i and j refer to quantities associated
with orbitiand interval j respectively, s; is the dis-
tance along orbiti and Lj the total lengthof orbit i.
The integrals of equation (8) are found by numerical

integration.

So as to averagc out non- svstematl errors o\currlng in

Wany m " A Ve m oo

and \_AL/ /1,

a1
1y dal
are interv~ls n. The set of equations (8) is thereforc
re ct tt
t
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Illustration of how the intervals j and form-
factors g. are chosen for the modified
isochronization method.

indicates the values of t: which minimizes . It
easy to show by differentiating Q. with respect to
that the least-squares condition Teads to the following
setl UL dppu)m.mdu:' B({UdLl\![ltv‘

or M. = N. i= 12,0000,

which can be inverted to yield values of by. Tf one
m

notes that the diagonal eler

the contributions of all

whereas the off-

N.j‘y\
refer to contributions to two atmost
lapping intervals j and k, one can deduce that the spacing
of the intervals must not be much smaller than the radial
interval occupied by an e.o. in the sector, if the
diagonal elements are to dominate. Also the inner- and
outermost int st straddle those
of the inner-, and outermost e,o.'s ! andm for which the
magnetic field on the orbits (bksl) and B(s ) will con~
tribute significantly to the upper 1 i

ic
(8). Under these conditions the determina

partially over-

1
vals

m’
integral of Lklu\

small, and the inversion of equation (9) \1eld% Strble

and wallahahavad valiipe AFf

and well-behaved values of by.
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