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Introduct ion -- 

The versatility and accuracy of programs such as 
LALAland specially SUPERFISH2to calculate the rf prop- 
erties of standing-wave cavities for linacs and storage 
rings is by now well established. Such rf properties 
include the resonant frequency, the phase shift per pe- 
riodic 1 ength, the E- and H-field configurations, the 
shunt impedance per unit length and Q. While other pro- 
grams such as TWAP’have existed for some time for travel- 
ing-wave structures, the wide availability of SUPERFISH 
makes it desirnblc to extend the use of this program to 
traveling-wave structures as well. That is the purpose 
of this paper. In the process of showing how the con- 
version from standing waves to traveling W~IVCS can be ac- 
complished and how the group velocity can be calculated, 
the paper also attempts to clear up some of the common 
ambiguities between the properties of these two types of 
waves. Good agreement is found between calculated re- 
sults and fxperimcntal values obtained earl ier. 

Space Harmonics, Standing and Travel ingaves - - 

To illustrate our problem, let us review the case 
of the classical cylindrically symmetric disk-loaded 
waveguide for which LALA and SUPERFISH can yield exact 
field solutions. It is well known’ that in the lowest 
pass-band (accelerating TMOl-type mode), the traveling- 
wave E_ field can be expressed as 

(1) 

where an is the amplitude of the s ace harmonic of in- 
dex n, E,z = Roz t Znnz/d, k& = k2 - Bi , k =w/c and d is 
the periodic length. Let a be the radius of the iris 
and b the radius of the cylinder. On axis r=o, 
Jo (0) = 1 and the amplitudes all reduce to the anIs. 
Furthermore, the fundamental (n = 0) field amplitude at 
any r, for a structure where B, = k = w/c is equal to 
a,Jo (0)) which indicates that a synchronous electron 
undergoes the same average acceleration independently 
of radial position. If one chooses the origin at a 
point of symmetry of the structure (in the middle of a 
cavity or a disk) the a ‘s are all real. Notice that 
for r = 0, expression (1 7 assumes a special form when 
z = 0 and when z = d/2: 

z=o ~~ = ,jutrao t a-1 f a+1 + a+2 + a-2 + * ’ * 

d d (2) 
z = --- 2 

F 
‘2 

=e(Ut-Ro7&a -a 
- 0 -1 - atl t a+2 +a-2+ . . . 

i.e., the :,xial traveling-wave E-field goes through an 
extremum where all the space harmonics are colinear. 
This is also how at r = a the space harmonics “conspire” 
to make the tangential E-field at the disk edge equal 
to zero, i.e., how they fulfill the function for which 
they were invented in the first place, namely to match 
periodic boundary conditions. Notice also that if the 
phase shift per cell is an exact sub-multiple of 2n, 
i.e., fl,d = 2n/m, then fir., = @,(I tmn). In what follows, 
we will fo(-us on the so--called 21~/3 mode (m = 3) which 
is easy to represent schematically and for which there 
is a large amount of experimental data from the SLAC 
linac and many others. The results, however, are quite 
general and apply to any Bad except TI. Fig. la illus- 
trates the behavior of Iiz, Er and H 

4 
: two traveling- 

~-- 
*Work supported by the Department of Energy under 

contract number EY-76-C-03-0515. 

The group velocity for a traveling wave can be ob- 

tained from the dispersion diagram (v 
the energy velocity (vg 

g =d~u/dr) or from 
=P/W ) where P is the pilwtlr 

flow and WT 
Y 

is the energy sTired per unit length. In 
order to ca culate vg with some accuracy from the first 
expression, which is generally done for the standing- 
wave case, one needs to compute several frequencies on 
the w - Eod diagram, typically for Bad = 0, n/3, n/2, 2n/3 
and T(, and then fit the data to some smooth curve. If 
however we want to obtain v 

7. 
by calculating the field-- 

at only one frequency, name y the operating frequency, 
then the second expression is to be used. For a given 
z, we have: 

(5) 

length 1 ength 
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Figure 1 

It turns out that LALA and SUPERFISH already give WSW, 
the energy stored for the SW case. The denominator 
WTW is simply WSW/2: this can be shown rigorously or 
seen by superposition since over a wavelength, the 
energy stored from a TW coming from the left added to 
that from a TW coming from the right results in twice 
the energy stored. The expression in the numerator 
can in principle be calculated at any cross-sectional 
plane (S) since, by continuity, energy cannot accumu- 
late and the net power flow over a period must be in- 
dependent of the plane of integration. What we need 
to know are the simultaneous values of E, TW and H 
at their time maxima in one plane. $,‘JJW These’quantities 
can be extracted from the SW plots. To do so, a “trick” 
is needed. If two traveling waves of the proper phase 
add up to a standing wave (Eqs. (3)) (4)), there must 
conversely be two standing waves which add up to a 
traveling wave. Referring to Fig. Id, we see that if 
for example we shift the diagram of Fig. lc to the left 
by z =-d, we have a secon$ SW solution ($) which looks 
just like the first one (A): 
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“B = cjUC~2ancos Rn (z t-d) 

2 = ejWtg2ancos Bn z (6) 

both of which are made up of one TW going left and one 
going right. The “trick” is to add them with the proper 
phases to have the TW’s going left cancel and those go- 
ing right add. This can be achieved by multiplying 
1 by ej tBod - ‘12) and 3 by ejr’*. Then: 

A ej (B,d - 5 > 

-- 
TW 

and it follows that the amplitude and phase of the TW 
are : 

A2 + B2 - 2AB cos Rod 
j TWI 2 = ---es.--- 

4 sin2 Pod 
(7) 

tan 0 (2) = 
B - A cos $od 

A sin Sod (8) 

where A and B are functions of z. Eqs, (7)) (8) are gen- 
eral and apply to any field component, E,, Ez or %, at 
any 2. Hence, given exact SW field values, e.g., as 
shown in Fig. 2a and 2b, one can now obtain exact TW 
plots as in Fig. lb. Eq. (7) gives the maximum TW am- 
plitude at any z and thus yields the E, and H,+‘s needed 
for Eq. (5). Notice furthermore that Eqs. (7) and (8) 
can be obtained from A and 3d plots in either the Neuman 
or Dirichlet configurations. In what follows, we shall 
narrow down the discussion to planes of symmetry half- 
way through a cavity or a disk where Eqs. (7) and (8) are 
simplified. 

Neuman case: With the Neuman boundaries of Fig. lc, 
we see that Er,SW=O at z=O and 3d/2 but has finite 
values at z =d/2 and d. 
Er,sw(d/2)/fl At 

At z=d/2, B=O and E, TW = 
z =3d/2, B=-A and Er,TW=Er’SW(3d/2)/fi 

Similar observations can be made for . For ex&nple, 
at z=O, B=AcosB,d and )/2 and at z=d, 
;,=;a;flf ;$,TW’l$,SW(d)* The results are summarized 

. Since the tabulated values are the maxima 
of the fields, the results must be self-consistent and 
independent of which mid-cavity or disk one considers. 
For the power calculation, we can take the power flow 
at Z=d/2, i.e., E, TWH,$ TW= 
or at z = d, i.e., i,,TWk, TW , 

Dirichlet case: Table II shows very similar re- 
sults for the Dirichlet case shown in Fig. lc. 

Results 

Table III shows the results that have been obtained 
by computing the properties of four SLAC-type cavities 
and b comparing them with results obtained experimen- 
tally ii in the early 1960’s. The four cavities whose 2b 
and 2a dimensions are shown are equally spaced along a 
constant-gradient 3,i)5msection. The computed values of 
r/Q, Q and r are obtained from the standing-wave SUPER- 
FISH calculations. The values of r/Q for the TW case 
are simply twice those for the SW case. All values of 
r/Q and r have been corrected for the a, (velocity of 
light) space harmonic amplitude, The values of Q are 
the same for the SW and the TW cases. The assumed con- 
ductivity of copper is 5.8 x lo7 mhos/m. We see that in 
general, agreement between computed and experimentalre- 
sults is excellent. For reasons not understood, the 
resonant frequency is almost systematically high by1MHz. 
Most other differences including those for the group 
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Table I Table I1 

Maximum Values of Er and Hd; for Neuman Boundaries 
I I 

Maximum Values of Er and HP for Dirichlet Boundaries 

Mid- Mid- Mid- Mid- 
Locat ion Cavity Disk Cavity Disk Locat ion -_--_ _ _~- -~ CavicL -.~- Disk Cavity Disk -- -_-____ ______ -- -.-- - 

d 3d 0 
d d 3d 

z 0 2 
d 

--s- 
z T 2 

E r,SW 
0 Finite Finite 0 

I I 
E Finite Finite Finite Finite 

r,SW 

E r,TW 

E II, SW($) % swCd) 

6 --_ -z-- 

Hl+ , SW 
Finite Finite Finite Finite H$ ) SW 

HWJ 
$, SW L (0) 

H 
2 4 ,SlP H4,S\d(d) &$ ; I Hit,Tl\r 

Finite Finite 

H$ SW($) *4 ,Sw(d) 
y?-- J-- 

____I_-1----p- i L - - 
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Table III 

Comparison of Computed and Experimental Results for Four SLAC Cavities 

Neuman Boundaries 

Cavity No. 
2b 2a f exp f c0l.p 

(cm) (cd ?IHz MHz 
(r/Q)exp (r/Q)comp Qexp Qcomp 'e p 

R/cm R/cm NY, 4rn $j$$ - ___ --.. (‘g”)e2 (vg’c)coq) 
_~ - -- 

1 8.3442 2.6201 2856 2857.Ob 38.13 38.99 14160 13780 54 53.7 0.0202 0.0204 

28 8.2960 2.4506 2856 2857.74 40.40 40.70 13860 13760 56 56 0.0157 0.0161 

57 8.2393 2.2185 2856 2857.40 42.77 43.08 13560 13736 58 i9.2 0.0111 0.0113 

84 8.1773 1.9171 2856 2857.15 45.45 46.01 13200 13710 60 63.2 0.0067 0.0073 

Dirichlet Boundaries 

1 a.3442 2.6201 2856 2857.01 38.13 38.70 14160 13780 54 53.4 0.0202 0.0204 

28 8.2960 2.4506 2856 2857.28 40.40 40.40 13860 13759 56 55.6 0.0157 0.0162 

57 8.2393 2.2185 2856 2856.83 42.77 42.76 13560 13734 58 58.8 0.0111 0.0114 

a4 8.1773 1.9171 2856 2856.56 45.45 45.79 13200 13708 60 62.80 0.0067 0.0066 

velocity, are within 1 or 27 . It should also be remem- Nuclear Laboratories, Chalk River, Ontario, 
bered that the experimental results were certainly not Sept. 14-17, 1976, pp. 122-128. 
accurate to more than 22. Slight discrepancies between 
the Neuman and Dirichlet results can be used as final 3. R.H, Helm, “Computation of the Properties of ‘Ir,ivel- 
checks to verify the ultimate reliability of the field ing-Wave Linac Structures,” Proc. of the 1970 Pro- 
calculations. Figs. 2a and b give actual computer plots ton Linear Accel. Conf., National Accelerator 
of the maximum amplitude standing-wave snapshots shown Laboratory, Batavia, Illinnis, Scpt 28 - Ort, 2, 
in Fig. lc. Both examples were computed for the di- 1970, Vol. I, pp. 279-291. 
mensions of the first cavity in Table III. The periodic 
length d is 3.5 cm and the disk thickness 0.584 cm. All 4. For earlier discussions on the suliject treated in 
field amplitudes are in arbitrary units, EZ being on this paragraph, see P.M. Lapostolle and A.L. Septier 
axis, Er and HP off axis. “Linear Accelerators,” North-Holland Pub. Co., 

Amsterdam (1970)) pp. 40-47 and 88-107. 
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Fig. 2, Standing-wave amplitudes of E,, E, and Hg in cavity (1) (see Table III) as calculated by SUPERFISH, 
E, is on-axis, E, and H* are off-axis. 


