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Introduction

The versatility and accuracy of programs such as
1ALAand specially QLPERFIQHQto calculate the rf prop-
erties of standing-wave cavities for linacs and storage
rings is by now well established. Such rf properties
include the resonant frequency, the phase shift per pe-
riodic length, the E- and H-field configurations, the
shunt impedance per unit length and Q. While other pro-
grams such as TWAP have existed for some time for travel-
ing-wave structures, the wide availability of SUPERFISH
makes it desirable to extend the use of this program to
traveling-wave structures as well. That is the purpose
of this paper. In the process of showing how the con-
version from standing waves to traveling waves canbe ac-
complished and how the group velocity can be calculated,
the paper also attempts to clear up some of the common
ambiguities between the properties of these two types of
waves. Good agreement is found between calculated re-
sults and experimental values obtained earlier.

Space Harmonics, Standing and Traveling Waves

To illustrate our problem, let us review the case
of the classical cylindrically symmetric disk-loaded
waveguide for which LALA and SUPERFISH can yield exact
field solutions. It is well known" that in the lowest
pass-band (accelerating TMpj-type mode), the traveling-

wave Ez field can be expressed as
n=te® :
. _ Jlut - 8,2)
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where ap is the amplltude of the SEBLL harmonic of in-
dex n, £,z =R,z + 2nz/d, k k=w/c and d is
the perlodlc lengtl [et be the radluq of the iris
and b the radius of the cyandLr. On axis r=o,
Jo(0) =1 and the amplitudes all reduce to the ay's.
Furthermore, the fundamental (n=0) field amplitude at
any r, for a structure where 8 =k=w/c is equal to
J5(0), which indicates that a synchronous electron
undergoes the same average acceleration independently
of radial position. If one chocses the origin at a
point of symmetry of the structure (in the middle of a
cavity or a disk) the a 's are all real. Notice that
for r=0, expression (1? assumes a special form when
z=0 and when z=d/2:
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i.e., the axial traveling-wave E-field goes through an
extremum where all the space harmonics are colinear.
This {is also how at r=a the space harmonics "conspire"
to make the tangential E-field at the disk edge equal
to zero, i.e., how they fulfill the function for which
they were invented in the first place, namely to match
periodic boundary conditions. Notice also that if the
phase shift per cell is an exact sub-multiple of 27,
i.e., B d—211/m, then Bn—80(1+mn) In what follows,
we w111 focus on the so-called 2r/3 mode (m=3) which
is easy to represent schematically and for which there
is a large amount of experimental data from the SLAC
1inac and many others. The results, however, are quite
general and apply to any Bod except w. TFig. la illus-
trates the behavior of EZ, Er and H¢: two traveling-
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wave snapshots of E are shown for twe instants of time,
wt =0 and wt=n/2. Notice that E, is plotted on axis
(r=0) but E, and Hy arc zero on axis and thus are plot-
ted for O<r<a. The units are arbitrary. The field
patterns that are shown have for many years been known
approximately from bead measurements, paraxial approxi-
mations of Maxwell's equations and general symmetry
arguments. However, some of the subtleties in Fig. la
can only be gotten from a complete computer solution,

as shown later in this paper. Notice also that since
the fields are sketched at an instant of time, they are
not at theilr maxima, except for selected symmetry planes
Hy travels in phase with E, to preserve a net power flow
(EXH)Z:ETH@. Fig. 1b shows lz T max at r = 0 vs z and
the corresponding phase variation, as governed by Eq. (1).

The standing waves are shown in Fig. lc. The snap-
shots of E are given for two different boundary condi-
tions: Neuman (Ep =0} on the left, and Dirichlet (Hy = 0)
on the right. E, and E, which are shown at their maxi-
mum values in time are in time-phase, Hy leads them in
time quadrature and there is no power propagation: the
energy simply switches back and forth between the elec-
tric and magnetic fields. On the axis (r=0), the axial
electric fields can be expressed as:

. n=te
o gute T . .
EZ’SW ) r?;— © Hancoﬁ Bn z  (Neuman) (3)
Jwtn =+ ®
R > 23n51n g 2 (Dirichlet) )

n=-

where the factor of 2 comes from the summaticn of two
traveling waves of amplitude a,. These and the corre-
sponding Ey and H¢ are the components calculated by LALA
and SUPERFISH. Notice that the snapshots of E,

E, ,SW at the instants chosen
H¢ is different.

TW and
are indistinguish aﬁlo but

Group Velocity

The group velocity for a traveling wave can be ob-
tained from the dispersion diagram (v, =dw/dg) or from
the energy velocity (vg =P/WTW) where P is the power
flow and Wy, is the energy stored per unit length. In
order to calculate v, with some accuracy from the first
expression, which is generally done for the standing-
wave case, one needs to compute several frequencies on
the w-Bod diagram, typically for Bod =0, n/3, /2, 2n/3
and m, and then fit the data to some smooth curve. If
however we want to obtain v by calculating the fields
at only one frequency, namely the operating frequency,
then the second expression is to be used. For a given
z, we have:

(5)
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Figure 1

It turnc out that LALA and SUPERFISH already give Wgy ,
the energy stored for the SW case. The denominator
Wiy 1s simply WSW/Z: this can be shown rigorously or
seen by superposition since over a wavelength, the
energy stored from a TW coming from the left added to
that from a TW coming from the right results in twice
the energy stored. The expression in the numerator
can in principle be calculated at any cross-sectional
plane (S) since, by continuity, energy cannot accumu-
late and the net power flow over a period must be in-
dependent of the plane of integration. What we need
to know are the simultaneous values of Ey w and H ,TW
at their time maxima in one plane. These quantitied
can be extracted from the SW plots. To do so, a"trick"
is needed. If two traveling waves of the proper phase
add up to a standing wave (Eqs. (3), (4)), there must
conversely be two standing waves which add up to a
traveling wave. Referring to Fig. 1d, we see that if
for example we shift the diagram of Fig.*lc to the left
by z =-d, we have a second SW solution (B) which looks
just like the first one (A);
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both of which are made up of one TW going left and one
going right. The "trick" is to add them with the proper
phases to have the TW's going left cancel and those go-
ing right add. This can be achieved by multiplying

A by eJ(BOd -T/2) and B by ejﬂ/z. Then:

; s L o
aedCod=2)y 37 2 sin 8,dy" anej (vt = 8p2)
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and it follows that the amplitude and phase of the TW
are:

2 2
9 A" + B - ZABcosBOd

vl * = 5 )
4 sin Bod
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Asingq (8)

tan® (z) =

where A and B are functions of z. Eqs. (7),(8) are gen-
eral and apply to any field component, E., E, or Hq), at
any z. Hence, given exact SW field values, e.g., as
shown in Fig. 2a and 2b, one can now obtain exact TW
plots as in Fig. 1b. Eq. (7) gives the maximum TW am-
plitude at any z and thus yields the E, and Hy's needed
for Eq. (5). Notice furthermore that Egs. (7) and (8)
can be obtained from A and 8 plots in either the Neuman
or Dirichlet configurations. In what follows, we shall
narrow down the discussion to planes of symmetry half-
way through a cavity or a disk where Egs. (7) and (8) are
simplified.

Neuman case: With the Neuman boundaries of Fig. lc,
ve see that Ey gy=0 at z=0 and 3d/2 but has finite
values at z=d/2 and d. At z=d/2, B=0 and Ep Ty =
Br,sw(d/2)/y3. At 2=3d/2, B=-A and Ep my=Ey, gu(3d/2)43.
Similar observations can be made for H,. For example,
at z=0, B=AcosB,d and H«?,TlI:th,SW( )/2 and at z=4d,
B=A and H¢,TW =H¢,sw(d)- The results are summarized
in Table T. Since the tabulated values are the maxima
of the fields, the results must be self-consistent and
independent of which mid-cavity or disk one considers.
For the power calculation, we can take the power flow
at z=d/2, 1.e., EI,TWHq) Tw‘-‘Er’sw(d/z) Hq)’sw(d/zzlb/.}
or at z =d, i.e., Er,TW b, 0= Er,SW(d) H¢,sw(d)/ 3.

Dirichlet case: Table II shows very similar re-
sults for the Dirichlet case shown in Fig, lc,

Results

Table TII shews the results that have been obtained
by computing the properties of four SLAC-type cavities
and by comparing them with results obtained experimen-
tally” in the early 1960's. The four cavitles whose 2b
and 2a dimensions are shown are equally spaced along a
constant-gradient 3.05msection. The computed values of
r/Q, Q and r are obtained from the standing-wave SUPER-
FISH calculations. The values of r/Q for the TW case
are simply twice those for the SW case. All values of
r/Q and r have been corrected for the a, (velocity of
light) space harmonic amplitude. The values of Q are
the same for the SW and the TW cases. The assumed con-
ductivity of copper is 5.8 x 107 mhos/m. We see that in
general, agreement between computed and experimental re-
sults is excellent. For reasons not understood, the
resonant frequency is almost systematically high by 1MHz.
Most other differences including those for the group



Table I Table II
Maximum Values of Er and lI¢ for Neuman Boundaries Maximum Values of Er and H@ for Dirichlet Boundaries
Mid- Mid- Mid- Mid-
Location Cavity Disk Cavity Disk Location Cavity Disk Cavity Disk
|
d 3d d 3d
Z 0 2 d 2 A 0 5 d _,é,
E , 0 Finite Finite 0 E Finite Finite Finite Finite
r,SW T,SW
) d : 3d
i hr,sw(z) hr,Sw(d) . rr,Sngzl i (d> o @ E£L§W(2
“r,IW N 3 T, TW 2 T,5W'20  “r,sw 2
v v |
H@,SW Finite Finite Finite Finite % H¢,SW 0 Finite Finite 0
|
: 3¢ d
. i os'® @ R @ R u A I
Ld’ ,TW 2 ¢ ,SW "6, SW ) ¢, TW \/g A_“‘\/)v
Table II1
Comparison of Computed and Experimental Results for Four SLAC Cavities
Neuman Boundaries
ity N 2b a fexp  feorp  (1/Q ey /Qeomp Q o Te Teomp ;/e) v /e
Cavity No. o) (em)  Hz Mz olen”  ajdm SXP o eom IR o ) Gl omp
1 8.3442 2.6201 2856 2857.04  38.13 38.99 14160 13780 54  53.7 0.0202 0.0204
28 8.2960 2.4506 2856 2857.74  40.40 40.70 13860 13760 56 56 0.0157 0.0161
57 8.2393 2.2185 2856 2857.40  42.77 43.08 13560 13736 58  59.2 0.0111 0.0113
84 8.1773 1.9171 2856 2857.15  45.45 46.07 13200 13710 60  63.2 0.0067 0.0073
Dirichlet Boundaries
1 8.3442 2.6201 2856 2857.01 38.13 38.70 14160 13780 54 53.4 0.0202 0.0204
28 8.2960 2.4506 2856 2857.28  40.40 40.40 13860 13759 56  55.6 0.0157 0.0162
57 8.2393 2.2185 2856 2856.83  42.77 42.76 13560 13734 58  58.8 0.0111 0.0114
84 8.1773 1.9171 2856 2856.56  45.45 45.79 13200 13708 60 62.80 0.0067 0.0066

velocity, are within 1 or 2%. It should also be remem-
bered that the experimental results were certainly not
accurate to more than 27. Slight discrepancies between
the Neuman and Dirichlet results can be used as final
checks to verify the ultimate reliability of the field
calculations. Figs. 2a and b give actual computer plots
of the maximum amplitude standing-wave snapshots shown
in Fig. lc. Both examples were computed for the di-
mensions of the first cavity in Table III. The periodic
length d is 3.5 cm and the disk thickness 0.584 cm. All
field amplitudes are in arbitrary units, EZ being on
axis, Er and H0 off axis.
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Fig. Standing-wave amplitudes of E,, E. and H in cavity (1) (see Table III) as calculated by SUPERFISH.
E, is on-axis, Ey and H¢ are off-axis,
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