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Summary. 

Our purpose is the development of a general analyti- 
cal theory which describes the orbit motion of particles 
in a storage ring, including the effect of the acceler- 
ation, analogous as done for cyclotronslr’. We only 
present here the start, neglecting theeffect of the 
RF system. 

We will use a Hamilton formalism with action and 
angle variables and show that this leads, after several 
correct transformations2r3, to expressions for the off- 
energy function , tunes and chromaticities. This theory 
can be extended to the influence of non-linear elements 
as sextupoles and octupoles and long straight sections 
on the orbit motion. 

Our treatment only needs direct field quantities in 
the form of Fourier components of the guide field ele- 
ments. No a prioh information about the lattice func- 
tions ( n,B etc.) is required, whereas normally one 
uses4 1’ the behaviour of these functions as provided 
by lattice designing matrix codes. 

The results of the analytical theory as given here 
will be compared with numerical results applied on the 
lattice of the proposed Dutch dedicated synchrotron 
radiation storage ring PAMPUS’. 

Introduction. 

The orbit motion of acharged particle in a magnetic 
field with respect to an equilibrium orbit, can be des- 
cribed in curvilinear co-ordinates by a general Hamil- 
tonian H: 

I 
H=-R (It E$) 1 lP2-PE -p; - eA6 1 (1) 

where: R is the independent variable (azimuth), 
p is the radius of curvature in the magnets, 
R is the mean radius of the machine, 
s=l inside the bending magnets, elsewhere E=O. 

Introducing reduced variables (i.e. 5i = x/p, px = $ ) 

and evaluating the square root in (1) up to the second 
degree of these variables lead to a more handsome Hamil 
tonian. For the vectorpotential AB, up to sextupole 
components, we use: 

Ae = Bop I E + 4 (c-n)F2+ (2) 
- (is+ 4E 

where B. is the fieldstrength in the bending magnets, 
aB 2 

and n=-f ( 
a2B 

$lo, s = - $ ( dl (3) 
0 

0 0 

are the quadrupole and sextupole components. 
Describing the motion of a particle with a relative 

momentum deviation 6 with respect to the central par- 
tide p = p (ltfi) = B ee (I+6) , the Hamiltonian H of 
(1) now becoges, up to O the third degree in the cano- 
nical variables and up to the cirst degree in 6: 

x= - RL - R‘ 
E 6 xx t i(l-6) 2 {(c-n);;2+ n2 ) t (4) 

We now introduce new variables, which are deviations 
with respect to the reference particle ( X , p ) with 
momentum deviation 6 in the medium plane, ;ene?ated by: 

- z!!!? - - -- -= 
G ( ii, nx, i-, pz ) = rxx - nxxo t xp, t zpz (5) 

The relations between the old and new variables are: 

IT = Fx - Fo; 5 = x - y. ; Tz = iz and z =y. (6) 
X 

From now on, we delete the bars above the variables. 

After the transformation (5), the Hamiltonian can be 
written as a power expansion in the variables: 

H ( S, rxt z, P, ) = H 
(1) + ,(2) + H(2) + H(3)+.17) 

U P U 

where u and p means ‘unperturbed’ (6=0) and ‘perturbed’, 
This Hamiltonian shows us the oscillations of the 

particles around (x ,p ), which is the closed orbit of 
the reference partigle’with momentum deviation 6. The 
central particle is characterized by (x ,p )=(O ,0) . The 
separate parts of this Hamiltonian will’be’treated in 
subjoined sections in order to deduce expressions for 
characteristic lattice properties. 

Off-energy function. 

In order to describe the betatronoscillations around 
the central orbit (x ,p ), the first degree parts in 6 
of the Hamiltonian (9) Rave to vani;!: (8) 

H(1) - $&I=0 
P 

Transforming (8) to the independent variable s (ds=R,dB) 
will lead to the differential equation: 

$1 = ;21x, + 
E 
;;2 

(9) 

with x =6.x; p 
0 1 0 = 6.pl and pl = $$ 

Note that this differential equation just decribes the 
behaviour of the off-energy function o(s) = p.x, (s) . 
Equation (9) can be solved by substituting the Fburier- 
components of the guide field7. 

Betatronnumbers. 

In this section we will consider the unperturbed li- 
near betatronmotion, in order to deduce analytical ex- 
pressions for the betatronnumbers: 

Hc2) = 4 n2 
U 

x + 4 $-(s-n)S2 
R2 (10) 

t “r 7 nz’ 

We neglect coupling between the radial and vertical mo- 
tions , so we can treat both modes independently. We will 
consider here only the radial motion in detail. 

In dealing with a problem represented by (10) it is 
convenient to use action and angle variables2 (I,$): 

TX= V?!$.sin($-QIB) and 5 = J2~.cos(9-Q10). 

This means that we study the radial motion in a (11) 

phase plane rotating with a fixed frequency Q,. The new 
Hamiltonian now becomes : 

K (I,$) = Hs!2) (71 --I 5) - Q,.I = e,.I t f,.I (12) 
u x I L L 

with e2 the constant and f the oscillating part. 
We are looking for a trans $ ormation which removes the 
oscillating parts of (12). This can be generated by2 : 

G (i,$,e, = -7.4 - -T.U2(B,$). (13) 

After this transformation the new Hamiltonian becomes: 

X = { e2 t f2 t e (au2) t f 
2 a+ 

(aU,) 
2 w 

- E2 >.I (14) 

The function U2 is now determined by the fact that all 
oscillating parts in this Hamiltonian have to vanish, 
leading to the requirement: 

f t e @2) + osc(f Z2) au 2 2 a+ 2’a$ 
- (z”) = 0. 

We keep the constant part, so that: 

K= e2.1t <f z2> .Ir, 
2’a$ (16) 

where the last term contains the influence of the field- 
modulation. 

From (16) we now get an expression for the frequency 
of the betatronmotion, the tune or betatronnumber Qx: 
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Q,= Ql + e 2 
av,, + <f2'@ (17) 

Using in practice Q, as an estimation of the tune Q 
X 

, 

we can find the correctiontermby evaluating (17). This 
will lead to an exact result if U2 is correctly deter- 
mined from (15). 

It can be noted here that the relation between y and 
I given by ( 13) just contains the information about the 
behaviour of the beta-function B(s)‘. 

We will illustrate this principle on the radial mo- 
tion which is described by the radial part of (10). We 
expand the magnetic field in a Fourier series: 

l’able 1: Radial betatronnwnbera for PAMPUS (Qx~QJ, 

Natural chromaticity of a lattice. 

R2 
;;2 (s-n) = 4 A0 t $ ( An cos n0 t B sin n@ ) n 

The change in the betatronnumber Q with a relative 
momentum deviation is called chromaticity. 

= u2 t ; y, cos n(O-en). (18) The Hamiltonian which describes the linear motion of 

with n = k.N, k=1,2.. and N the (super)periodicity. a particle with a relative momentum deviation 6 is: 

Applying the transfromation to action and angle varia- H(2) = H(2) + H(2) 
bles as given above and substituting (18) , lead to the 
following expressions : 

.2 
(24) 

I 
witi A = Q _ w 

1 
Ql .I 

(19) 
- kLnz . R2 2} 

f2 = - + ~os(24-2Q,(0-en)) t E 'n 
n 2Q 

.cos(n(e-en)) t 

+ CT-l. 
Here we restrict ourselves to homogeneous bending mag- 

n 2Q, 
.c0s(2~-2Ql(e-en)).c0~~n~e-en~)~. nets ( E n=Ol . Sextupoles are also neglected in this 

section (S=O), so we look for the nutu.raZ chromaticity 
The function U2 has at least the same periodicity as of a lattice. Our treatment here regards the radial mo- 

f7 - As a first approximation we assume: tion. The vertical motion can be handled analogously. 

$2 = a cos ne 

1 

t f? cos(2$-2Qle) 

1 1 

(20) 

This expression is correct up to the second (21) 

t K COS(2$-2Qli%n8) + p COS(2f$-2Q18 -no). 

degree of the field components ( thus vi 1 . 

The coefficients are determined by the requirement (15). 
The expression for the betatronnumber Qx now2becomes8 : 

Qx=Q1+~+~ 

In order to find an expression for the tune which 

Yn 
4(24,-A) n 2(2Q,-A) (nL-(2Q,-A)‘) 

contains higher degree terms in Y,, we set generally: 

Applying now the introduced action and angle variables 
on the radial part of the Hamiltonian (24) and substi- 

A u2 

tuting the Fourier series of the guide field, we get an 

2(2Q-A)’ 

expression for the natural radial chromaticity* : 

( l++Mol 

(A2tB2 ) 

M 

- --!%- &MO t $1 t 
4 (2Q-A) 

+c u2 

$x = {Q,$ - 

n (2Q-A)L (:‘-;2Q-A)‘) “Mo 5 - ” 

u2 (A$Bi) (n*t (2Q-A) 2, 

’ 

’ 5 “lt I? (2Q-A) L(nL -(2Q-AjLj2 ’ 

"2 = k$l ( a2k cos 2k$ t b2k sin 2k# 1. (22) 
- I: 

u2 @,Mn+BnNn) +n(AnRn-BnPn) (25) 

The coefficients a2k and b2k have the same periodicity n (24-A) (n2-(2Q-A)Z) 

as the guide field and contain now power series of the where EX 1 = 4 MO t ; ( M cos no t Nn sin n0 ) 

field y . Substituting (22) in (15) leads to recurrent 
relatiots between these coefficients, 

and ep 
from which we can 1 = f PO t ; ( Pn 

n cos no t Rn sin rie ) (26) 

deduce an exact expression for the tune8: are the (reduced) off-energy function and its derivative 

cf.b > in the bending magnets (see (9) ) . 

Q,= Q, - $- $<b 2 
2 
> t - (23) 

The expression (25) for the natural chromaticity is 
2Q, ’ correct up to the second degree in tbaFourier components 

We have applied this principle on the lattice of the 
proposed storage ring PAMPUS (see Appendix). In the 
final expression (23) we considered only the higher or- 
der contributions Cvi,yz etc.) to the term cf.b2> 

those which arise from the field components with the 
main periodicity (PAMPUS: N=8), i.e. no ‘mixed’ terms 
are taken into account. To overcome this, the solving 
of the recurrent relations becomes undesirably compli- 
cated, In table 1 the results of these analytical cal- 
culations are compared with numerical matrix calcula- 
tions with the computer code AGS’ for several values of 
the tunes (Q 2 Q ) . The results are almost independent 
of the estim:tionzQ . The discrepancies for higher va- 
lues of the tunes a?e due to the neglected ‘mixed’ 
terms. Instead of using an estimation Q , which can be 
based on some foreknowledge, it is poss!ble to choose 
A = 0 in (19). This may lead to a rather wrong estima- 
tion Q,. So one may expect that this more simple method 
is less accurate especially for higher values of the 
tunes where the modulation of the field is high. The 
vertical tune can be calculated analogously’. 

of the field. This means that we may not expect accura- 
te results for high values of the tunes, analogous to 
the results of the calculations of the tunes. 

We applied the chromaticity equation (25) on the 
PAMPUS lattice and compare in table 2 the analytical 
calculations with the results following the normally 
used theories4 ’ 5. These theories start from the lattice 
functions to be known from computer calculations. In 
these ‘classical’ theories it is not always quite clear 
whether the canonical transformations are fully cor- 
rect”. However it must be said that their final expres- 
sions have a more simple configuration. 
Table 2 presents forthe radial oscillation the natural 
chromaticities for the PAMPUS lattice as calculated by 
the different methods. Also indicated are the results 
as given by the orbitprogram AGS’ which determines the 
closed orbit of a particle with a relative momentum 
deviation (here 6=5. lo-‘) in an iterative way, For lower 
values of the tunes there is a good agreement between 
the results of our ‘action and angle’ method and the 
‘classical’ method’. We do not yet understand the dis- 
crepancy with the AGS calculations at low values of Q,. 
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AQ,/ 6 
Q,=Q, (AGS) (5) (v?A#W (y$=O) 

'classical' 

I:n~~! 
Table 2: Natural radia2 chromaticities for PAMPUS. 

Chromaticity correction by sextupoles. 

In order to overcome the head-tail instability in 
an electron storage ring, one must compensate the nega- 
tive natural chromaticities by sextupoles. Analogously 
to the treatment as given previously,we derive an ex- 
pression for the extra contribution of these sextupo- 
les to the chromaticity. Starting from the Hamiltonian: 

H= 

(27) 

One gets for the radial chromaticity, up to the second 
degree in the Fourier components, due to sextupoles : 

AQx ($ = + 
ASo(4Q-A) 

sext 8Q(2Q-A)2 + 
So(AktBi) (n2t(2Q-A)2) 

- 8 4Q(2Q-A)L(nL-(2Q-A)L)2 ' 

(28) 

+ c 
So(2Q-A)(A;+B;) - 2Q!AnSn+BnTn) 

n 2Q(2Q-A)2(nL-(2Q-A)L) 

with 
RL 
;2X1s = 31 so + i ( Sn cos no + Tn sin no ). (29) 

the Fourier expansion of the 'off-energy' function 
in the sextupole magnets. 

It is rather trivial to remark that this equation shows 
us that the sextupoles are most effective ii they are 
placed at azimuthal positions with extreme values of 
the off-energy function. Within the expected region of 
the tunes, application of this equation on PAMPUS 
agrees with the 'classical' methods*. 

Stability region due to sextupoles. 

The non-linear terms of the sextupole fields intro- 
duce third order resonances reducing the stable region. 
We will illustrate our analytical theory on the Qx=N/3 
resonance. 

The radial Hamiltonian describing the influence of 
the sextupoles on the stability region is: 

H = H(2) + H(3) = H(2) 2 
U U U 

- @s5". (30) 

Since we are interested now in the N/3 resonance we ap- 
ply the following action and angle transformation: 

T = 
X 

msin(4-N0/3) and 5 = J2Ilw'.cos($-N0/3). 

Then the Hamiltonian can be written as: (31) 

H = e2.1 t f2.1 t e .I 3/2 
3 

t f3.*3'2. (32) 

In order to skip the oscillating parts we apply the 
transformation generated by2: 

G (I,$, = - 7.4 - y.U,(e,$) - I -3'2.u3(4,$l * (33) 

In the resulting Hamiltonian we are interested in the 
last term of this equation. Using the correct functions 
U2 and U3 one finally gets': 

-3/2 
K = (Q-N/3).?t&w-3'2.{" n .cos(3+)+Wn.sin(3$)1.1 

- $$)S = 'i V. t ; ( Vn cos no t Wn 
(34) 

with sin no). 

and w2 given by (18). 
Since we are here not interested in the tune-shift due 
to the sextupoles, we only consider the Hamiltonian up 

to 13'2. From this Hamiltonian we find the stationary 
points in the phase-space resulting in the well-known 
triangle-shaped stability region. Substituting the beam 
emittance (which is related to T ) we will find the 
required distance to the resonance line Q, = N/3. 
Applying this for PAMPUS leads to the same results* as 
given by other methods". 

Final remarks. 

We have shown that our theory starting from direct 
field quantities can provide all information about the 
lattice behaviour. Since we started from the basic 
transformations we can extend this analytical theory to 
e.g. octupoles, long straight sections and acceleration, 

Appendix. PAMPUS lattice. 

The lattice of the proposed Dutch dedicated synchro- 
tron radiation source PAMPUS (Photons for Atomic and 
Molecular Physics and Universal-Studies) consists out 
eight FODO-unit cells.-One of these cells is sketched 
with its dimensions in figure 1. PAMPUS will provide at 
final energy (E = 1.5 GeV) a radiation spectrum with 
critical wavelenath h = 6.9 8 ( B = 1.2 T). 
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Figure 1. FODO unit cell dimensions for PAMPUS 
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