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SYNCHROBETATRON OSCILLATION DRIVING MECHANISM* 

Ronald M. Sundelin? 

SUMMARY 

Any cavity-like structure which supports modes 
that have both a finite accelerating field at the lo- 
cation of a particle beam passing through the structure 
and a transverse gradient in that accelerating field 
is capable of driving synchrobetatron oscillations. 
Such oscillations are incoherent, are substantially 
independent of the chromaticity, and do not depend 
explicitly on the n-function. Methods of computing 
the amplitudes of such oscillations, which can be 
quite significant under some circumstances, are pre- 
sented. 

INTRODUCTION 

Either an RF cavity or an incidental vacuum cham- 
ber cavity in an electron-positron storage ring is 
capable of causing incoherent synchrobetatron oscil- 
lations if it has deflecting modes whose axes do not 
coincide with the actual beam axis. Modes having 
transverse first-order gradients in their longitudinal 
accelerating fields are well known to have magnetic 
fields which cause a net deflection of the beam, and 
are hence called deflecting modes. Separation of the 
actual beam axis from the mode axis can be caused 
either by having the beam off center in the vacuum 
chamber, or by having an asymmetric cavity. By asym- 
metric cavity is meant a cavity whose boundary, where 
it intersects a plane perpendicular to the nominal beam 
axis, is not equidistant in the f and -F directions 
(the symbols used in this paper are defined in Appen- 
dix I.) 

The physical mechanism which causes the synchro- 
betatron oscillations is as follows. A charged bunch 
passing through a cavity off-axis relative to a de- 
flecting mode will induce a voltage in that mode. 
Associated with the rate of change of this voltage is 
a deflecting magnetic field which will cause angular 
deflections of particles in the bunch. The magnitude 
of these deflections depends on the longitudinal posi- 
tion within the bunch of each particle. On successive 
passages through the cavity, the location of each 
particle relative to the bunch center will be governed 
by that particle's normal synchrotron oscillations, 
which are periodic with frequency f,. Nonlinearities 
in the synchrotron motion (due to a sinusoidal, rather 
than linear, restoring force; potential well distor- 
tion in the RF cavities; and higher modes in various 
structures which produce longitudinal forces which 
are not linear with z) and in the deflection (because 
the deflecting magnetic field varies sinusoidally, or 
in an even more complicated way, rather than linear- 
ly, with z ) cause deflections at various harmonics 
of f,. The magnitudes of these harmonics depend on 
the amplitude of a given electron's synchrotron os- 
cillation. Since various electrons with the same 
synchrotron oscillation amplitude have random synchro- 
tron oscillation phases, the resulting deflections are 
incoherent. When fB i mfs = Mfo (1) 

the necessary condition is met for the betatron oscil- 
lation amplitude to grow linearly with time, to be 
limited only by Landau damping, radiation damping, or 
by physical boundaries of the beam chamber. Since 
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Landau damping arises largely from variations in 
synchrotron oscillation amplitudes, and attendant 
variations in f and (through the chromaticity) f , 
and since the p:esent mechanism deals with partic B es 
of particular synchrotron oscillation amplitudes, 
Landau damping is not expected to be significant in 
this case, unless the lattice has an appreciable 
octupole moment. In the absence of Landau damping 
and beam loss, the linear growth rate will be bal- 
anced by the radiation damping rate. 

HIGH-Q CASE 

Consider a deflecting mode with a sufficiently 
high Q that the majority of the stored energy is re- 
tained between bunch passages. For simplicity, assume 
that the synchrotron oscillations and betatron oscil- 
lations are sinusoidal. Also assume that the condi- 
tion f q k* f, (2) 

is met, Denote the separation between the mode axis 
and the actual beam axis by x. Under these assump- 
tions, an electron which is executing synchrotron 
oscillations of amplitude A will appear in the cavity 
with longitudinal excursion 

z q A cos(fs* 2 nn/fo) (3) 

To first order, a deflecting mode has a trans- 
verse gradient in the longitudinal effective voltage, 
which will be written as V'. This corresponds to a 
quadratically rising effective shunt impedance, R". 
For a gaussian bunch of N particles, 

V' = NeR" x f,S (4) 

where S is the reduction factor exp(- 4n2f2c2/c2) re- 
sulting from the spread of the bunch. 

Now consider a path integral along the mode axis, 
returning a distance x off axis. It follows directly 
from Maxwell's equations that 

i[B; x dz] q [V' x / (211 f)] (5) 

whier; B includes the same transit time factors as V'. 
The angJlar deflection of a particle is given by 

(6) 

for an electron with suitable phase. 
Since the center of the bunch is maximally re- 

tarded in the high-Q limit, wit4 eq. 2) satisfied, 
the phase relationship between E and -B dictates that 
an electron which arrives slightly before the bunch 
center will be deflected toward the E = 0 line, an 
electron at the bunch center will not'be deflected, 
and an electron which arrives slightly after the 
bunch center will be deflected away from the 
E = 0 line. 

' The phase & (relative to the mode) with which an 
electron arrives is Q, 
receives is 

A0 = -lAOlma;c sin+ 

In order to determine 

= 21Tf z/c. The deflection it 

_ - sin(A e V' = 
2vmoycf c ' 

f 
cos(2~ n ff)) (7) 

0 

the dependence on various har- 
monics of f , define p q 271 f/c and $ = 27~ n f /f , 
and expand the sine in a power series. Next rGdute 
the powers of cosines to multiple angles. This 
yields, keeping up to fifth power in p, 
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3 5 
sin(p cos$)= (p- &&)cos@( -P&-) . 

24 384 QUANTITATIVE EXAMPLES 

cos(34J) + ( &, cos(50) t I * (8) 

Combining equations (4) and (7), 

A0 = 
Ne2x foR' 'S 

- -- sin(P cos0) 2am. X f (9) 

If the electron under consideration is oscillating 
with a betatron angle 0= -B. cos(21~ fB t), and equation 

(1) is satisfied, 8, will grow in amplitude at the 
rate 

deO 
N e2 x f;R" S 

dt= 4rmoycf F,(P) 

where the function F,(p) denotes the appropriate har- 
manic coefficient, and the extra factor of 2 in the 
denominator result S from averaging over a cosL term 
in adding Ae's to 8, . The maximum betatron excursion 
(in the sinusoidal betatron motion approximation) is 
related to e. by X0 = e. c/(21" fB). Hence 

dXo _ N e2 x fi RI'S F,(P) 
-- 
dt 871 2mo Y fB f 

(‘0) Machine 

xO 

0 6 8 IT Lmo y fg f 

Equation 11 can be generalized by including the 
nonlinearity of the synchrotron oscillations in the 
expressions for F (p), (which, in general, will intro- 
duce even harmoni& and increase the magnitudes of the 
higher harmonic coefficients) and by using the 
"instantaneous" betatron frequency at the location of 
the cavity for f 

Fl 
; for example, if one is considering 

vertical betatro oscillations and is concerned with 
a cavity in a region in which the B-function is K 
times its average value, the instantaneous value of 
fg would be JR times smaller than the average value, 
leading to an X (in the normal part of the lattice) 
JR times as 1aPge as would otherwise have occurred. 

LOW-Q CASE 

As shown in Appendix II, the fields just follow- 
ing passage of the bunch are, for a single mode, 
higher in the high-Q case than in the low-Q case by 
the ratio Q f,/(Tf ). Hence for the low Q case, 

L 

x0 = 
N eL x foZ"S F,(p) 

68 rmO Y fa Q (‘2) 

In the low-Q case, the mode is unexcited prior to 
arrival of the bunch, and maximally excited (in gen- 
eral) just after the bunch leaves (note that this 
same contribution is present in the high-Q case, but 
that the residual sinusoidal fields from previous 
bunch passages are superimposed on the low-Q fields, 
and are dominant for sufficiently high Q). Substan- 
tial modifications have to be made to the function 
F (p) to account for the rapidly changing mode exci- 
t&ion in the low-Q case. In addition, all deflect- 
ing modes of the cavity will contribute to the synch- 
robetatron oscillation, since equation (2) no longer 
has to be satisfied. 

A high-Q situation is considered in which the 
equivalent of a CESR RF cell has its axis shifted 
0.04 m relative to the beam axis; the equivalent of 
this situation could occur if a large, asymmetric 
vacuum box were present in the ring. For an actual 
RF cell, x should be less than 0.01 meters if good 
position monitors are available and reasonable care 
is taken in aligning the beam. For a CESR cell, the 
author has measured a TM,,, deflecting mode shunt 
impedance, appropriately reduced for 
with o = .045 m, of Z" 
authors prefer to normalize such a shunt impedance to 
X or ix, thus eliminating the m-* dependence 

!I 
. The 

frequency of t4he TM,,, mode is f = 1.138 10 Hz, and 
the Q is 4.10 . Consider those electrons whose rms 
synchrotron oscillation excursion is 2~. Although 
relatively few electrons have this large an excur- 
sion, if those electrons which have this excursion 
are lost, the beam lifetime will be extremely short 
(of the order of 200 radiation damping time constants), 
Other numbers relevant to three examples are given in 
Table I, together with the values of X0 which result 
for various harmonics F,(p). 

Case I Case II Case III 
CESR CESR SPEAR II 

Energy 

N 

8 

1.5 1o12 i.2 10" ';i,5 10" GeV 

fO 

6 

fs 

X,(m=l) 

Xo(m=3) 

Xo(m=5) 

3.9 lo5 3.9 lo5 1.28 lo6 Hz 
250 13.2 6.37 set -1 

4,438 lo6 4.438 lo6 6.66 lo6 set-' 

.049 1.35 9.56 m 

.027 .76 5.35 m 

.0074 ,205 1.45 m 

The three examples given in Table I assume that 
the cavity is in a region of average B. As pre- 
viously discussed, the values of X would be five 
times as high as those shown if th& cavity were in a 
location where B had 25 times its average value, as 
might be found for B, near a low-8 insertion. 

The probability that a single cell of the type 
considered will have a particular mode which, within 
its bandwidth, satisfies equation (2) is 0.073 for 
CESR and .24 for SPEAR II. If the machine has several 
such cells, each with several important deflecting 
modes, the probability that one of them will satisfy 
equation (2) becomes quite high. In the low:Q cavity 
case, the values of X0 would, for low harmonic num- 

bers, be approximately four times smaller than those 
shown for CESR, and fourteen times smaller for 
SPEAR II. Factors which wouldtendto increase the 
values ofX are the contribution of all deflecting 
modes (not'just the one with frequency f)and, for 
higher harmonics, the rapidly changing energy in the 
cavity during the bunch passage (which would increase 
the amplitudes of higher harmonic coefficients). 

CONCLUSION 

Incoherent synchrobetatron oscillations, driven 
by deflecting modes in asymmetric cavities or in 
symmetric cavities through which the beam passes off- 
center, can lead to severe beam loss under some condi- 
tions, as seen in the examples of Table 1. Both 
high-Q and low-Q contributions are important. It 
appears that the best methods for avoiding this 
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problem are to avoid unnecessary cavity-like struc- 
tures,to avoid satisfying equation (l), to keepv as 
far as possible from an integer to make the values 
F (P) small, to make necessary cavity-like structures 
aT symnetrical as possible, and to center the beam as 
well as possible, particularly in high-B regions. 

The measurable properties of synchrobetatron os- 
cillations due to this mechanism are difficult to 
distinguish from th 

P 
se due to the mechanism described 

by the SPEAR group, and both may be important. 

Appendix I 
Symbols 

Standard International Units Are Used 

A Amplitude of synchrotron oscillation, meters 
B Magnetic field normal to the plane of a betatron 
y oscillation. 

c Speed of light 
e Charge of an electron 
f Frequency of a cavity mode 
F,(P) Coefficient for the mth harmonic of fr 

fO 

fS 

fP 

: 

L 

M 
m 
m 

NO 
n 

F 

Bunch revolution frequency 
J 

Synchrotron oscillation frequency 

Betatron oscillation frequency 

Ratio of local B to average 8 
Integer 
Length of a cavity cell 
Integer 
Integer 
!1ass of an electron 

Number of particles in bunch 
Number of bunch revolutions completed 
Power dissipated in a cavity cell 
Ratio of stored energy to energy dissipated per 
radian 
Charge in a very short bunch 
Shunt impedance of a cell 
In cylindrical coordinatss, the radius vector 
Shunt impedance is R" x 
Gaussian bunch shunt impedance reduction factor 
Cell transit time factor 

TM I I I Transverse magnetic mode with two azimuthal 

t 

U 
V' 

X 

xO 

X 00 
Z 
i! 

a 

% 
Y 
A0 
6 
n 

0 
0 
x0 
j; 

zeroes, one radial zero at wall, and one 
longitudinal zero in Ed. 

Time 
Stored energy 
Effective voltage q V'x 

Distance transverse to beam axis 
Amplitude of betatron oscillation 

Initial amplitude of betatron oscillation 

Shunt impedance for infinite velocity particles 
Distance in the beam direction from the bunch 
center 

Function which prescribes betatron trajectories 
Bin the vertical plane 

Ratio of total mass to rest mass 
Change in betatron angle 
Radiation damping rate, betatron motion 
Function which describes off-energy closed 
orbit 

Betatron angle 
Maximum betatron angle 
Wavelength 
Wn) 

v Average number of betatron oscillations per 
revolution 

E Electric field 

Ef Final E after bunch passes 

E i InitialE before bunch passes 

E Component of E in the z direction 

PZ 2n f/c 
u Standard deviation in meters of gaussian bunch 

5 
Bunch revolution time 
Phase of a particle relative to phase of a de- 

flecting mode 
4 2nnf/f 
0 27rfS0 

Appendix II 

Relationship Between High-Q and Low-Q Fields 

field 
In a cavi ty, the relationships between power, 
, shunt i mpedance, and stored energy are 

2 
!p&Lz 

2 
+.-= 

2 
(13) 

u= oE 
2 

(ZT /Q)Q (ZT21;h%d 
E 

= n E2L Zn 
(ZTL/Q)(P/L)I(PIw) (ZTLIQ)(wIL) UfIQh 

04) 
Taking the derivative of U with 
using conservation of energy, 

ii!= EL= 2E(dc/dq)L 
dq (zi2/~)o: 

Eliminating EL from the 
and integrating yields 

/dc=j'*dq 

respect to q, and 

(15) 

right hand equation in (15) 

(16) 

Due to the combination of fields in the cavity and 
fields added in phase by the bunch passage, there 
results 2 

Ef 
=ci++- ;q 07) 

Due to field decay betb!?en bunch passages, there 
results 

~~ =E~ exp(-lto/2Q) (18) 

Combining (17) and (18) yields 

Ef = (ZT2/Q)(U2)q/ (1 - expbd(2Q)) (19) 

For very high Q, exp(-w-r/(ZQ))z 1 - ok/, so 
(19) becomes 

cf = (ZT2/Q)Q(q/-) (Note that this is another way of 

writing Ohm's law.) (20) 

Dividing (20) by (17), with ~~ set equal to 0 to 

represent the low Q case, the high Q to low Q en- 
hancement factor 2Q/(o~) results. 

1 
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