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Summary and Introduction 

In a large synchrotron or a storage ring, the 
random closed orbit distortions are generally large. 
When combined with the sextupole magnets for chroma- 
ticity correction, they produce linear stopbands be- 
cause effective gradient errors appear. Further, the 
vertical closed orbit distortion produces a vertical 
dispersion because there appears a vertical bend in 
the quadrupole and sextupole magnets. These effects 
are studied by an analytical method. 

It is shown that the tune v, which is close to 
v = mNs and 3v = mNs (where Ns is the number of super- 
periods and m is an arbitrary integer) should be 
avoided to have a small stopband width. In order to 
have a small vertical dispersion, the tune close to 2~ 
= mNs should be avoided. The present theory also 
indicates a preferable method of chromaticity correc- 
tion to avoid an excessive vertical dispersion. The 
effect of closed orbit correction is not considered in 
this paper. 

Equation of Motion 

The Hamiltonian of particle motion in a machine 
with sextupole magnets, a momentum error Ap/p and 
horizontal Tnd vertical kick errors tixi and 0 . is 
given as ’ ” Yl 

H=Ho+V 

Ho = ;(p;+p;) + +(x2-y’) 

M 
v= iZlOxib ( z-q (l- %)x - ; % x 

- i~16yi6~z-zi~ (1 - %)y 

l&2 2 - ZK p(x -y ) + iK’(l- %) (x3-3xy2), 

where 
aB 

K = jj+ 7; 

a2B 
K’=+$ 

x = horizontal deviation 

y = vertical deviation 

z = orbit length (independent variable) 

px,pY 
= canonical momentum 

Z i = orbit position of a kick 

M = number of kick elements 

The kicks Bxi and 0 
Yi 

are given by 

0 _ AByiRi ) 0 
ABxiLi 

=- Xi BP yi Bp ’ 

(1) 

(2) 

where AB denotes a random field error and R is 
length of’ehe kick element. We assumed a thinilena 

the 

(&function) for a kick, 

The closed orbits (including dispersion functions) 
are periodic 

z$saF:tn3e d h 
solutions of the Hamiltonian 

n t usare described by the equations 

x” +Kx = eP.- 
eq eq P P i~~exiG b-2,) (1- %) 

Lilt i-K 
P ‘eq 

- ;K' (l- 

M 
Ygq - KY !k eq = i~16yiG("-zi) Cl- p) 

K3eq + K’(l- $)xeqyeq, (4) 

where primes on x and y denote differentiation with 
respect to z. eq eq 

Further simplification can be made by putting 

X =x +rl AL 
eq co x P’ 

Lb 
(5) 

Y eq = Yco + rly p 8 

where “co” denotes random closed orbit distortions and 
n and n are horizontal and vertical dispersions. 
Kgeping Terms of zeroth and first orders in *p/p, 
neglecting nonlinear terms and assuming that ri << n, 
and n, is given by the l/p term in eq.(3), we ‘4;btain 

M 

Y’dO - Kyco = 1 8 
i=l yi 

G(z-Zi) (6) 

“;: - IVY = i~l~yi~(“-“,) - (K-K’rlx)yco. (7) 

Eq. (6) is well-kno 
several authors!” 9) 

and eq, (7) has been derived by 

We then consider a betatron oscillation around 
the closed orbits x 

eq 
and y 

4 
By putting 

x=x tu, 
eq 

y=y +v, 
eq 

where u and v denote the amplitudes of betatron oscil- 
lat on, 
to1 f 

the perturbation Hamiltonian V is transformed 

v = ?Z b. K(U2-v2) 
2 P 

- ; K’xeq(l- $9 (u2- v2) 

where we have neglected nonlinear terms 
sider only linear stopbands. 

t K’yeq (l- quv, 

since we 
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resonance and the effective gradient error is equal to 
-K'x 

e9*0. 
We consider a case for a right momentum or 

APIP The sto and width for half-integral res- 
onance is given by 57 

Vertical Dispersion 

Solutions of qs. (6) and (7) are given in terms 
of Fourier series 27 

x K’exp(ip$x,y)dzl 
X,Y eq 

(19) 

for V ‘L p/2 (p: ingeter). with 

and 
rl y 

The rms estimate is expressed as 

(6vx ,);, = + 
, 

where we put 

with 
X = qH. (21) 

eq 
C 

Jm = o (3, (K-K";x)e-im'y dz. (13) 

To roceed further, we should evaluate the func- 
tion *). If we assume a thin lens for a kick 
Bi, H(I$) is expressed as 

3) Notations are familiar ones of Courant and Snyder. 
The first term in eq.(12) is equal to y and small. 
The function Jm is related to Ab/@ and %romaticity in 
the way 

H(4) = &‘i=1’i i OS F 1’2 0 c V(lrC@/Ji) 

(14) 
M(4) 

+ 2sinnV c f!~l'~ 0 sinv(@-I) )], 
i=l i i i (22) 

where M is the total number of kick elements and M($) 
is the number of kick elements located at the azimuthal 
points from 0 to $. 

Looking at eq. (12), we see that the largest 
contribution to n comes from the terms n Q iv and 
kQ?v. Since nyk should be an integer multi$le of 
superpgriodicity N we see that the tune around 2V Q 
N n (n = arbitrarysfnteger) should be avoided to haye 
aSsmall vertical dispersion. Even then, the largest 
contribution to n comes from Jo and J where m ‘L t2~. 
Thus, it is imporeant in chromaticity Correction to 
make these t rms small. 

67 
It is to be noted here that 

Close et al. has pointed out by a computational method 
that the vertical dispersion at the half-integral 
structure resonance described above is rather easily 
corrected by closed orbit correction. 

We now assume that the kicks e!s are “uncorrelat- 
ed”, i.e. e.e. = 3-T 6.., where the %ar indicates an 
ensemble avkr ge. a iThi assumption is reasonable when 
we consider random closed orbit distortions. When an 
orbit correction is taken into account, the corrector 
kick will be correlated in some way to the random 
kicks, We neglect this case in this paper. Then, 

~___ H(4)H(4’) = 
M(4) 

+ 2sinlrviZl i i 1 B g sinv(++i)cosV(~t$‘-l/Ji) 

M(4’ ) 
+ 2sinTrvi& BiT sinV($‘-l/li)cos (IT-t+-$i) 

M(4,4’) 
t 4sin21n, ig, BiT sinV(4ii)sinv(4’ii) 

Horizontal dispersion is also affected by random 
closed orbit distortions. The additional horizontal 
dispersion An, is given in a similar way by 

(23) 
Arl x 

$ ; Vi fk J;-k 
t- 

2~ n,k=-m (vi-k')(V:-n2) ein4x (16) 
where M($,$‘) denotes the minimum of M($) and MC+'). 

with 
Another form of H(@)H($‘) is obtained from the 

Fourier series form of closed orbit distortion given by 
eqs.(lO) and (11). In this case, 

f k (17) 
X 

m 
v4 fkfk’ 

H($)H(4’) = k k,i- (&k’) (VZ-k! 2) eik9tik’4’ (24) 
, 

C 
J; = @,(K-K’ nx)e-imOx dz . 08) 

0 

The ensemble mean f f 
k k’ 

is given for “uncorrelated” 
thin lens kicks in he form 

Half-Integral Resonance 

As seen from the Hamiltonian (9), the horizontal 
closed orbit distortion gives rise to half-integral 
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In the above formulae M 
fkfk’ = ,$-+r &q e-i(k+k’)+i (2.5) 

= Fk+k’ * 

If q is equal to e2 for all kicks, the function is 
non-zero only when ktk’ = tit; (m: arbitrary integer). 
We consider this case. 

If we insert eq.(23) or (24) into eq.(20), we ob- 
tain the rms stopband width for half-integral resonance. 

Linear Stopbands 

We give the formulae 7) of rms linear stopband 
widths and linear tune shifts. The expressions are 
given in terms of Fourier series because qualitative 
features of the present theory are more manifest. For 
half-integral resonance, the stopband widths are given 
as (V % p/2) 

,477 

(6vx);s = ; BB ‘i2 
v r(mtm’) 

m,m’=* m m’ V -(ptm)‘11V”-(p-m’)3 ’ 

(26) 
v4F 

(6~~);~~ = y B;B;, 
(m-km ) 

m,m'=a {V"-(p-tm)"){V" -(p-m'jT ' 

(27) 

The linear tune shifts Avx, Avy are given as 

(28) 

v”F(*, 

(*Vy) Ls = t m ,I;- “;B;I .&, 
(29) 

, 

The stopband width for the sum resonance (VxtVy%p) is 
given as 

(~vsum’;s ” m m’L B;B;t 

V4F'(mi-m') 
7vyp+g}{ . , v'-(p-m')"l' 

(30) 

The width for difference resonance (Vx-Vy-0) is 

v4Fth, > 
(6vdif):ms x m mfi-BABif {VZ-mZ){v’-m’Z} ’ (31) 

, 

Bm = 2 F B:f2K;Bicos(m$i) 

Bi = T;; i @xi il. c ‘I2 Byi K;Ricos(m$i) 

F 
Fm = 4TI”V’ F ‘xi cos b$,,) 

?- 
Fil = 4rr2v2 i pyi ~0s (miii,,) . 

(32) 

We have aseumed that the lattice is symmetric and v = 
V = v. m,m’ in the summation takes values which a$e 
ixteger multiples of Ns. Suffix x or y is attached 
to $i depending on the case. 

The stopband width for half-integral and sum res- 
onances becomes large when V Q “(m-p) and v Q, i(m'-p). 
Since p Q 2v, this condition is expressed as V = N n, 
3v = N n (n: arbitrary integer). On the other hana, 
the tute shift and the stopband width for difference 
resonance become large only when v = Nsn. 

Conclusion 

It is shown that the tunes, V Q N n, 2V Q N n 
and 3~ s N n, are unfavorable because & hey give %se 
to a largesdispersion or a large stopband width for 
linear resonances. These conditions are the same as 
those for integral, half-integral and third-integral 
resonances. We have considered linear resonates for 
Ap/p = 0, but we expect a similar resonance effect for 
Aplp # 0 due to the presence of ny and An . X 
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