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COUPLING RESONANCE 2vH~ 2Vv = 0 IN THE KEK PROTON SYNCHROTRON

Ainosuke Ando, Toshio Suzuki, Eiichi Takasaki and Ken Takayama*

Summary

The width of the fourth-order coupling resonance
2y, - 2v, = 0 is calculated for the KEK proton synchro-
tron for the case of various octupolar nonlinear
fields. The space charge nonlinear field has the
largest effect and 1t may cause some beam loss for the
diagonal tune v, v v v 7,25 at a high intensity. This
coupling resonance is avoided by choosing an off-
diagonal tune v, ~ 7.25 and v, v 6.25. Even then, the
linear tune shi%t and the tune spread due to space
charge octupolar field are found to be rather large
and these may be connected with the beam loss in the
KEK proton synchrotron.

Introduction

In the KEK)proton synchrotron, 1t was found
experimentallyl that the off-diagonal tune v "V 7.25
and Vv, v 6.25 showed a better transmission of beams
than ¥he diagonal tune v, Vv v_ " 7,25, Here v and Vv
are horizontal and vertical tunmes. This suggests the
effect of a coupling resonance of the type nv, - nv
= p, where n and p are arbitrary integers. S?nce tge
KEK proton synchrotron has a superperiodicity of four,
the above resonance 1s avoided when p 1s not an integer
multiTle of four, i.e. if we choose the tunes such
that |v, - vvi = 1.

The linear coupling resonance (n=1) is excited by
a skew quadrupolar component, which is absent in a
machine designed with a midplane symmetry and is only
due to errors. Since the error field does not possess
the superperiodicity character, the above argument is
not applied. Thus, we are led to a consideration of
an octupolar resonance (n=2).

There are several sources of octupolar fields. 1In
the field measuremgst on the magnets for the KEK
proton synchrotron,” a small octupole component is re-
ported for the quadrupole magnet, which is due to the
lack of exact quadrupolar symmetry. Further, the
quadrupole magnet has a dodecapole component. When
this dodecapole component is combined with a closed
orbit displacement due to momentum spread, it gro uces
an effective octupole field. It is also known oh
that the fringing field of a quadrupole magnet produces
an octupole component. Space)charge force is another
source of an octupolar field®

The coupling resonance 2V, - 2V_ = 0 due to these
octupole components is studied for a diagonal tune v
V., Vv 7.25. The space charge effect is found to be the
largest. It is also shown that the linear tune shift
and the tune spread due to space charge octupolar
field are rather large.

Hamiltonian

The relevant Hamiltonian is expressed as

H(X:Y1PX’PY; z) =Ho+ V,
1 1
Hy = 5ogte)) + KRGy, ¢h)
%y
Bp 3x '
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where x and y are horizontal and vertical coordinates,
Py and p_ are momenta canonically conjugate to x and
y> z 18 the orbit length taken as an independent var-
iable, and V denotes the perturbation Hamiltonian due
to nonlinear fields. The form of V depends on the
source of nonlinear flelds and we will give it sepa-
rately in the followings.

1) octupole component of a quadrupole magnet

V= E% K(Z)(x“—6x2y2+y“),
(2)
) 3K
'3—‘)(7' .

ii) dodecapole component and closed orbit displacement

The Hamiltonian for the dodecapole component is

V= E% K(u)(xs—lSX“y2+15x2y“-ye),
K(“) - a‘iK (3)
"

We consider a case when the closed orbit 1s displaced
by xeq = xp éE—due to the momentum error &p/p, where
xp is the dispersion function. Then, 1if we put x =
xeq + u, where u is the amplitude of betatron oscil-

lation, the relevant Hamiltonian becomes
_ L) 2 Bpia w22k
V=15k xp( p) (u*=-bu’y*+y*). %)

iii) fringing field of a quadrupole magnet

The scalar potential ¥ of a %uaﬁrupole magnet
with a fringing field 1s given by o

Y= {Kxy - l—éK"xy(x“yz)}Bo ,
(5)

2

o
=~

K" =

]

and the relevant fourth-order Hamiltonian is given by

,}l - - 1u LI
V=K xy(pxy pyX) 78t (% ¥ ®

The relation between the scalar potential and the
Hamiltonian is given in ref.(6).

iv) space charge

The fourth-order Hamiltonian for the space char%?
force for the Gaussian beam distribution is given by
A rp 2a+b 4

2b +a
BR%Y’ [3a3(a+bfr *

N
B (ary D 1
®)

V= 2

2 2
* (a2t Y

where A is the number density of particles per unit
length, r, is the classical proton radius, B is the
bunching %actor, B and Y are usual relativistic fac-
tors, and a and b are horizontal and vertical beam
sizes of V2 times the standard deviation.
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v) image force

The image force Hamiltonian is derived by the
Taylor expansion of the formula of Laslett, assuming
a parallel plate vacuum chamber of half-height h and a
parallel plate magnet pole of half-height g and filling
factor of p/R. The expression is

T 2
w_ N T, uNB” @
“'[5 720 ) 27TRB 90(2g) 2R R
7, T N8 (8)

_______ i 2.2
+535h m( D" -6xy*+ ¥,

where N is the number of protons and R is the mean
radius of the machine.

Averaged Hamiltonian

Except for the fringing field, the perturbation
Hamiltonian has the form

V= A(z)x" + B(z)xzy2 + C(z)y" . %)
We first consider this Hamiltonian., We make the trans-

formation of variables from (x, Px) and (y, p.) to
, wx) and (Iy’ wy), which are given by the’relation

X,y = /21x y x,y cos(\)H V¢x,y + wx,y) s
= - ___WAJ[
Pty = = [T (stalvy 0, ¥, )+

X,y

+ 0_ _cos(Vv

X,y H,V¢X»y * wxsy)} ’ a0

Here 6 and ¢ are an amplitude function, its

o
X,y X,y
derivative and a phase function of Courant and Snydere)
This is a canonical transformation whose generating
function is

2
B(x,¥,,750y52) = - - 7’;—)( tan(vyo H,)

0 2
- 2 _ 3y
ﬁiiy 7, tan(vv¢y+wy). (11)

When this transformation is dore, the unperturbed
Hamiltonian becomes zero and the perturbed Hamiltonian
is given by (9) where the transformation of variables
of (10) is made. It is then evident that I and

wx y are constants when perturbation is not égnsidered
’

21 are emittances of the beam and Y
X,y X,y

angles,
from z to 8 = z/R.

are phase

We further transform the independent variable
Then, the Hamiltonian is

_ 2.2 4 2
V= R[AABXIx cos (VH¢X+WX) + ABBxBnychos (VH¢x+wx)

X 2(v_¢ H + 4CB%1%cos" (v + . 12
cos” ( V¢y ‘by) By v ( v¢y wy)] (12)
We then average this Hamiltonian and keep the
terms which Varg)slowly under the condition 2v, - 2v_ =
p + 28 (§ << 1): Then, the averaged Hamiltongan <V¥
is

B
3,2, 342 | P
<> 3 Aon + ZCon + Iny [Bot+ )

X can(wx—wy+59+bp)], (13)
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where
Ay = 5%{ IA 82 dz,
Cy = —2—5 Jc B; dz, (14)
e L
By = oo /B Bxey dz,

ib_ 1 1(2v,0 =2v_0 -2v_0+2v_6+pB)
prle P ZNIBBxBye H'x " Viy "H v dz

Practically !B |eibp is the p-th Fourler harmonic

gince ¢ Qv ¢ N ®. As will be shown later, the quan-

tity|Bp|e P is approximately real for the KEK proton
synchrotron so that it is replaced by BP.
Then, we can perform the further transformation

from (wx’Ix), (wy,ly) to (wx,Ix), (wy,Iy), where

v, = wx + 86 and v, = wy.

Now the Hamiltonian is
3, 12 3, 2 EEC
<y> = Glx + §A°Ix + ECon + Iny[Bo+ 5 osZ(wx-wy)].
(15)

It is seen that the Hamiltonian 18 a constant of motion
and also

I +1 =17 (16)
is constant.

The fringing field Hamiltonian of the form

= Dxy (ny - pyx) (17)

has an additional contribution

<> = Iny {Dy + % DP cosZ(wX - wy)) . (18)
where
Do = “2-:"1_‘ ID(GXBY - ayBx)dz, 19)
D === |D{(i-0 )8 ~(1-0_)6.}
% 4l Xy y x

ei{ZvH¢x—2vv¢y—2\)H6+2vv8+pe} dz

Numerical Estimate

The coefficients of the averaged Hamiltonian (15)
and (18) are summarized in Table 1. Since B_is ap-
proximately equal to By for the diagonal tund 2v_ - 2v
=0 or p = 0, only the value of By is given. The
values are at injection or at 500 MeV.

For thi§ calculation, the results of the field
measurement”’ are used. For the dodecapole component
effect, the momentum spread of Ap/p = 2.7X10 ° is
assumed. For the fringing field, a step-funtion
fringing field is taken. For the space charge effect,
the intensity of 4. 5x10%2 ppp 1s assumed and we have
used a smooth approximation for the beam size.

It is seen that the space charge has by far the
largest effect and we consider only the space charge
effect in the following.



Table 1 1
Coefficients of the Averaged Hamiltonian (unit m ™)

Ay Bo X Bp Co
octupole component 6.1 0 ~6.1
dodecapole component 15.7 -12.3 -2.9

(é% = 2.7x10°%)
space charge 3.60x10°  1.18x10% 9.92x10°
image force -15.9 96.3 ~15.9
A C D D
0 0 0 b
fringing field -15.1 15.1 -34.2  34.2
Dynamics

Following Montaguef) we transform the variables
from (wx, Ix), (wy, Iy) to (wx, J), (y,a), where

J=1_+1_,
x 7y
b= 20w - wy), (20)
- 1
a = Iy/J 7

This is a combination of a canonical and a scale
transformation and the Hamiltonlan is given by

<> = 8, [ (n-cosb)at+ga+ Feosy] (1)
8Q, = BoJ
n= 3(AotCo) _ 2, (22)
Bo
o 228 + 3J(Co-Ag)
X Bod

Here ¢ and Y are canonical variables.

The extrema of a is given by %% = 0, which leads
to

(o? - %)sinw =0 . (23)

The beating range of o is given by eq.(21) with con-
stant <V> and the limit is given by the curves

(n-1)a? + ya + o (const),

(24)

(nmya? + X0 - 7 = ¢_ (const).

e L

The fixed points are given by %% = %% = 0, which occur
at

(@ - %)sinw -0,

a = 25)

D G @
2(n~cosy)

The beating of the amplitude o becomes largi when tEe)
fixed point appears in the physical range -3 <a < 55
The condition for this i1s

[x] <a+1. (26)

For the space charge, the condition (26) implies
-0.40 < v_ =V, < 0.20.
v H

The Laslett linear tune shift is AV = -0.24 and v, =
-0.15. This is calculated for a Gavssian beam and ?s
about factor two larger than for a uniform beam. The
octupolar tune spreads are also calculated to be 0.11
horizontally and 0.16 vertically.

Conclusion

At an intensity of 4.5 X 10%2 ppp at an injection
energy of 500 MeV, a rather large octupolar space
charge coupling is expected. Further, a rather large
linear tune shift and tune spread are expected. These
are one of the possible causes of the beam loss at
injection in the KEK proton synchrotron.
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