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COUPLING RESONANCE 2vH- 25 = 0 IN THE KEK PROTON SYNCHROTRON 

Ainosuke Ando, Toshio Suzuki, Eiichi Takasaki and Ken Takayama* 

Summary where x and y are horizontal and vertical coordinates, 
p and p are momenta canonically conjugate to x and 

The width of the fourth-order coupling resonance y: z is rhe orbit length taken as an independent var- 
2v 
trtn 

- 2v = 0 is calculated for the KEK proton synchro- 
forVthe case of various octupolar nonlinear 

iable, and V denotes the perturbation Hamiltonian due 
to nonlinear fields. The form of V depends on the 

fields. The space charge nonlinear field has the source of nonlinear fields and we will give it sepa- 
largest effect and it may cause some beam loss for the rately in the followings. 
diagonal tune V Q v Q 7.25 at a high intensity. 
coupling resonaice ii avoided by choosing an off- 

This i) octupole component of a quadrupole magnet 

di$.pai tune v 
linear tune shi t ii 

% 7.25 and vV i 6,25. Even then, the 
and the tune spread due to space 

charge octupolar f leld are found to be rather large 
and these may be connected with the beam loss in the 
KEK proton synchrotron. 

V = 4 K(2)(x4-6x2y2+y4), 
(2) 

K(2) _ a2K 
-axZ* 

ii) dodecapole component and closed orbit displacement Introduction 

In the KR$proton synchrotron, it was found 
experimentally 
and V 

that the off-diagonal tune VH Q 7.25 

e 

Q 6.25 showed a better transmission of beams 
than he diagonal tune VH ‘L vvQ 7.25. 
are horizontal and vertical tunes. This 

Here VH and Vv 

suggests the 
effect of a coupling resonance of the type nv - nv 
= p, where n and p are arbitrary integers. Ace tXe 
KEK proton synchrotron has a superperiodicity of four, 
the above resonance is avoided when p is not an integer 
multi le of four, i.e. if we choose the tunes such 
that TV, - \jV\ = 1. 

The Hamiltonian for the dodecapole component is 

v = $ K(4)(X6-15X4y2+15X2y4-y6), 

K(4) : 3°K 
-P* 

We consider a case when the closed orbit is displaced 

by x =x !i.E 
eq pp 

due to the momentum error /!p/p, where 

xp is the dispersion function. Then, if we put x = 

X 
eq 

t u, where u is the amplitude of betatron oscil- 

(3) 

The linear coupling resonance (n=l) is excited by lation, the relevant Hamiltonian becomes 

a skew quadrupolar component, which is absent in a 
machine-designed with a midplane symmetry and is only 
due to errors. Since the error field does not possess 
the superperiodicity character, the above argument is 
not applied, Thus, we are led to a consideration of 
an octupolar resonance (n=2). 

There are several sources of octupolar fields. In 
the field measuremg 

4 
t on the magnets for the KEK 

proton synchrotron, a small octupole component is re- 
ported for the quadrupole magnet, which is due to the 
lack of exact quadrupolar symmetry. Further, the 
quadrupole magnet has a dodecapole component. When 
this dodecapole component is combined with a closed 
orbit displacement due to momentum spread, it 
an effective octupole field. It is also known 

gr;puces 

that the fringing field of a quadrupole magnet produces 
an octupole component. Space charge force is another 

5) source of an octupolar field. 

V = 1 Kc4) x2(k) 2 (U4-6U2y2fy4) 
48 P P 

iii) fringing field of a quadrupole magnet 

The scalar potential J, of a ua rupole magnet 
with a fringing field is given by !,4? 

JI = bxy - $K"xy(x2+y2)bp , 

d2K 
K” = 2 , 

(4) 

(5) 

and the relevant fourth-order Hamiltonian is given by 

V = ;K’xy (exy-eyx) 
1 - -$P(x4-y4) ) 

(6) 
The coupling resonance 2VH - 2Vv = 0 due to these dK 

octupole components is studied for a diagonal tune v 2, 
vv ‘L 7.25. The space charge effect is found to be t e tt 

K’=x. 

largest. It is also shown that the linear tune shift The relation between the scalar potential and the 
and the tune spread due to space charge octupolar Hamiltonian is given in ref.(b). 
field are rather large. 

Hamiltonian 

The relevant Hamiltonian is expressed as 

H(~,Y,P~,P~; z) = Ho + V , 

Ho = ;(p:,;) t $K(x2-y2), 

iv) space charge 

aI 
K=1Y 

Bp ax ’ 

(1) 

The fourth-order Hamiltonian for the space char 
force for the Gaussian beam distrfbution is given by v 

v = &T [3a:;a;b;$7 x4 + 2 ab(afb) ,x2y2+ 2b + a zy4], 3b’(a+b) 

(7) 

where X is the number density of particles per unit 
length, r is the classical proton radius, B is the 
bunching f actor, B and y are usual relativistic fac- 
tors, and a and b are horizontal and vertical beam 
sizes of fi times the standard deviation. 
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v> image force 

The image force Hamiltonian is derived by the 
7) Taylor expansion of the formula of Laslett, assuming 

a parallel plate vacuum chamber of half-height h and a 
parallel plate magnet pole of half-height g and filling 
factor of p/R. The expression is 

v = &I- &;14& + $(+4g i 

+ +jpg cf 

(8) 
- l)] (x4-6x2y2t y4), 

where N is the number of protons and R is the mean 
radius of the machine. 

Averaged Hamiltonian 

Except for the fringing field, the perturbation 
Hamiltonian has the form 

V = A(z)x4 f B(z)x2y2 t C(z)y4 . (9) 

We first consider this Hamiltonian, We make the trans- 
formation of variables from (x, p ) and (y, p ) to 
(1 

X 
, ‘4,) and (1 , JI 1, Y Y 

which are given by theYrelation 

‘,Y = J21x y8x,y cos(vH,“~x y + qx y) 9 

‘21 
, , 

Px,Py = - 
i 

x,y {sin(V 8 
X*Y 

H,&Y 
+ ix y) f 

, 

+a cos (v 
W”X,Y +$xy)} * X,Y , 

(10) 

Here 8 c1 
X,Y’ X,Y 

and $ 
XYY 

are an amplitude function, its 
8) derivative and a phase function of Courant and Snyder. 

This is a canonical transformation whose generating 
function is 

a 
UX,+~,Y,$~;Z) = - jyf x2 - $- tan(vH$x+@x) 

-$ 

X 

(11) 
Y 

- T&- tan(vV+y+Jly)l 
Y 

When this transformation is done, the unperturbed 
Hamiltonian becomes zero and the perturbed Hamiltonian 
is given by (9) where the transformation of variables 
of (10) is made. It is then evident that I and 
JI XSY 

are constants when perturbation is notx&8nsiderede 

21 are emittances of the beam and 9 
XSY 

are phase 
X?Y 

angles. We further transform the independent variable 
from z to 0 = z/R. Then, the Hamiltonian is 

V = R[4A$: COS~(~~~~+$J~) t 4BBxByIxIycosz(VH~xt~x) 

x cos2(vv~yt$y) + 4cs;1;c0s4 (vv+y tJly) 1. (12) 

We then average this Hamiltonian and keep the 
terms which var 

8) 
slowly under the condition 2V - 2V = 

p t 26 (6 << 1). Then, the averaged Hamilton an <V B y 
iS 

3 
IB I 

cv> = 7 
AoI: t z&I2 t IxIy [Bat+- 

2 Y 

x cos2($x-Jly+G0tbp)], 

3542 

(13) 

where 

Ao = & IA i3; dz, 

co = j+ IC 8; dz, (14) 

Bo = 2 IB 8,ey dz, 

lBpleibp 

Practically \Bpleibp ia the p-th Fourier harmonic 

since $,Q$ Q 0. 

tity IBp 1 ib 
Y 

As will be shown later, the quan- 

e p is approximately real for the KEK proton 

synchrotron so that it is replaced by B . 
P 

Then, we can perform the further transformation 
from W, Ix), NY Iy) to (wx, Ix), (wy,Iy) , where , , 

W X 
= $, t 69 and wy = $,. 

Now the Hamiltonian is 

B 
<v> = 6Xx t ;AoI: t +I; + IxIy[Bo+ +osZ(wx-w,)]. 

(15) 

It is seen that the Hamiltonian is a constant of motion 
and also 

Ix+1 =J (16) 
Y 

is constant . 

The fringing field Hamiltonian of the form 

V = DXY (P,Y - pyx) 

has an additional contribution 

q> = IxIy {Do t 
1 - D cos2(wx - wy)l , 
2 P 

1 
Do = z D (@,8, - ayBx)dz, 

(17) 

(18) 

(19) 

D 
P 

= & Di (i-cc,) By-(i-a,) Bxj 

Numerical Estimate 

The coefficients of the averaged Hamiltonian (15) 
and (18) are summarized in Table 1. Since B is ap- 
proximately equal to Bo for the diagonal tung 2~ - 2V 

= 0 or p = 0, only the value of Bo is given. Th! ’ 
values are at injection or at 500 MeV. 

For “hi.7 calculation, the results of the field 
measurement are used. For the dodecapole component 
effect, the momentum spread of Ap/p = 2.7X10m3 is 
assumed. For the fringing fieid, a step-funtion 
fringing field is taken. 
the intensity of 4.5~10’~ 

For the space charge effect, 
ppp is assumed and we have 

used a smooth approximation for the beam size. 

It is seen that the space charge has by far the 
largest effect and we consider only the space charge 
effect in the following. 



Table 1 
Coefficients of the Averaged Hamiltonian (unit m-l) 

Ao Bo xBp Co 

octupole component 6.1 0 -6.1 

dodecapole component 15.7 -12.3 -2,9 

Ck 
P 

= 2. 7x1o-3:) 

space charge 3.60~10~ 1.18~10~ 9.92x103 

image force -15.9 96.3 -15.9 

Ao co DO D 
P 

fringing field -15.1 15.1 -34.2 34.2 

Dynamics 

5) Following Montague, we transform the variables 
from (w x, Ix), by, Iy) to (wx, J>, (ha), where 

J = Ix t I 
Y ’ 

qJ = 2(wx - WY), 
1 a = Iy/J - Z . 

This is a combination of a canonical and a scale 
transformation and the Hamiltonian is given by 

<V> = AQ,[(n-cos+)n2txo+ 4 Los+] ) 

AQe = BoJ , 

?.) = 3(Ao-+Co) _ 2 
Bo , 

X= 
-26 t 3J(Co-Ao) 

BoJ 
Here c1 and $ are canonical variables. 

(20) 

(21) 

(22) 

do The extrema of CY is given by - = 0, which leads 
to 4’ 

(a2 - i)sin$ = 0 , (23) 

The beating range of ~1 is given by eq.(21) with con- 
stant <V> and the limit is given by the curves 

(n-l)a2 t Xcl t i = C+ (const), 
(24) 

(rjtl)a2 t XCY. - i = c- (const). 

da @ The fixed points are given by z = d8 = 0, which occur 
at 

(a2 - $sin$ = 0 , 

~-X, 
2 (wos$) (25) 

The beating of the amplitude a becomes largf when “5;) 
fixed point appears in the physical range -2 < c1 < 2. 
The condition for this is 

1x1 <at1 I 0.6) 

For the space charge, the condition (26) implies 

-0.40 < v 
V 

- VH < 0.20. 

The Laslett linear tune shift is AV * -0.24 and AV = 
-0.15. This is calculated for a Gazssian beam and Bs 
about factor two larger than for a uniform beam. The 
octupolar tune spreads are also calculated to be 0.11 
horizontally and 0.16 vertically. 

Conclusion 

At an intensity of 4.5 x 10” ppp at an injection 
energy of 500 MeV, a rather large octupolar space 
charge coupling is expected. Further, a rather large 
linear tune shift and tune spread are expected. These 
are one of the possible causes of the beam loss at 
injection in the KEK proton synchrotron. 
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