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TRR REVISED SKEW QUADRDPOLE SYSTEM FOR COUPLING COMPRNSATION IN THB CERN INTERSECTING STORAGE RINGS (ISR) 

P.J. Bryant 

Abstract 

With the existing and proposed installations of The original skew quadrupole scheme in the ISR 
solenoid detector magnets and long schemes, the origi- (Fig. 1.a)) comprised two series chains. The magnet 
nal coupling compensation scheme in the ISR was no positions had been determined by a computer search for 
longer sufficiently versatile to provide adequate com- layouts which excited very little vertical momentum 
pensation under all conditions. A brief description of dispersion but at the same time could decouple the hori- 
the new scheme, which was installed early in 1978, is zontal and vertical motions in the presence of randomly 
given. This scheme can excite coupling vectors at any tilted magnets. Not surprisingly, both these chains 
phase so that it is able to compensate solenoids and gave almost purely real coupling vectors, since random 
large localized quadrupole errors in 10x-g schemes as tilts around the whole machine lead to an averaging 
well as random magnet tilts. The design of the scheme over the phase term in eq. (1). At first, this scheme 
is also strongly influenced by the fact that there are was adequate, but large localized errors, such as a 
no regions with zero horizontal dispersion in the ISR tilted quadrupole in a low-8 insertion or an axial 
and the skew quadrupoles have to be specially arranged field detector magnet, are not easily corrected by such 
so as to avoid exciting vertical dispersion. The experi- a scheme unless by chance the phase corresponds to the 
ence gained with this scheme and the methods used for correcting quadrupole chains. It became clear that a 
measurement and correction of the machine are illus- more universal scheme, which could compensate coupling 
trated by practical examples. vectors, C, of any phase, would be required. 

1. Introduction 

In the ISR, it is necessary to be able to compen- 
sate the linear, second-order, zero-harmonic. coupling 
resonance Qx - Qa = 0. The excitation of this resonance 
can be expressef in the form of a complex coupling 
coefficient, C, given by 

a) Origtd Skrw Ouadru&mla Layout in One Ouadront 
ouoll- am mnnccmd in IWO relies swingr 0, md 01 

hi, - u,) - 'a, - Q,)'3 

where: 

K(e) , skew field term, 

M(e) RB =gi 6' axial field term, 

x, 2 = transverse coordinates, 

e = axial distance over average machine 
radius, R, 

ht. k? = betatron phases, 

cc* 8, = betatron amplitude functions, 

BP = magnetic rigidity. 

In the above formulation of C, the origin of 8, 
px and pa define the observer's position. A change of 
origin affects only the phase of C, i.e. ICI is con- 
stant for all observers. Although mathematically the 
choice of the origin 'is irmsaterial, there is a reason 
for choosing an origin for which the phase term 
[(px - ua) - (Qx - Q&]averages to zero around the 
machine, i.e. a sysasetry point. Under these conditions, 
randomly distributed skew gradients, e.g. from magnet 
tilts, will in most cases give a purely real value for 
C, which is intuitively correct. 

Theoretically, it is equally possible to base a 
compensation scheme on either skew quadrupoles or sole- 
noids. Although each case must be judged separately, a 
coupling compensation scheme for a whole machine is 
better designed with skew quadrupoles. The substitution 
of practical values into eq. (1) shows that for a given 
contribution to C, quadrupoles are far less space and 
power consuming. Of course, skew quadrupoles can excite 
vertical momentum dispersion but this effect can be 
suppressed or turned to advantage by designing the 
scheme to correct median plane tilts as well. 
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2. Original ISR Coupling Compensation Scheme 
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Fig. 1 Original and Revised Skew Quadrupole Schemes 

3. Calculation of Coupling Compensation Schemes 

A practical skew quadrupole scheme needs to be 
able to separate the two functions of coupling control 
and vertical dispersion or median plane tilt control. 
For convenience, the coefficient, C, from eq. (1) can 
be divided into real and imaginary parts and the inte- 
gral replaced by a summation over N quadrupoles. 

z;.c =&(-zfi~i ~Y~[(px-p=)-(Qx-Q~)eli.(2) 
i=l 

where: 

the ith quadrupole has length $i and 

strength ki = & 

The excitation of the vertical dispersion can be 
found by modifying the well known closed orbit equation 
derived by Courant and Snyder2 to give 

., 

apz(s) = 2 ii::",, g(&opx ' k)i 
i=l 

where: 

COS Q, +J,(s) - liz i , '> ' 

apx* apz = horizontal and vertical momentum com- 
paction functions, 

s = position of the observer. 

(3) 
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4. Direct Method 

Clearly, the excitation of the vertical dispersion 
in eq. (3) can be wholly suppressed by situating the 
skew quadrupoles where apx = 0. By choosing positions 
with as nearly as possible V/Z difference in the phase 
term of eq. (2), C can be fully controlled. This strat- 
egy is very common, but unfortunately a is never zero 
in the ISR nnd it is necessary to searc \ for special 
quadrupole configurations. 

5. Harmonic Method 

This method3 allows control of both coupling and 
median plane tilt. In brief, it treats apz as a closed 
orbit distortion expressed as the sum of its harmonics 
in a form analogous to that used for closed orbits in 
Ref. 2. 

am cos (m$) + bm sin (m$) 1 , 

(4) 

Using a standard minimization program, the com- 
puter was used to search for suitable bumps. The ini- 
tial choice of the quadrupole positions is, of course, 
important. Ideally, the quadrupoles should 

a) fall into two groups which are separated by as near- 
ly as possible n/2 in the phase term 
[bx - 11,) - Q,-Q,)el, 

b) be at maxima in 8x 6, , II-- 
c) but at minima in Bz . d- 

For the ISR, this was best achieved by shifting 
two of the inner arc quadrupoles as shown in Fig. 1.b). 
With this layout of 7 series chains of 4 quadrupoles, 
a satisfactory scheme was calculated. Table 1 gives the 
calculated maximum apz inside the bumps and the residu- 
7:: ,vflues of apz and tilt at the intersections for 

0.05. Since it is somewhat harder for the scheme 
to excite vectors along the imaginary axis, these maxi- 
mum values generally occur at 90° in phase, 

TABLE 1 
where : 

normalized phase = / ddQZ B , 
0 

z 

a,, b,, = harmonic amplitudes of the modified skew 
gradient distribution (8ii2 apx k) in Q,, 

oPz can be expressed directly as a harmonic series 
0) 

aPz 
= B;(m) 

CL 
Amcos (m$) + Bm sin (m+) 1 . (5) 

m=O 

Equations (4) and (5) relate the harmonic ampli- 
tudes in apz to those of the skew gradient distribution, 
giving: 

t = j()$jdi apx k k)i ‘,:I (@;)* (6) 
z 

Thus, for N skew quadrupoles, N different equa- 
tions can be formulated, inverted and the magnet dis- 
tribution found to excite a particular set of apz har- 
monics Am and B,. If eq. (2) is included in the matrix, 
then (N-2) harmonics of apz and the real and imaginary 
coupling coefficients can be controlled by the N quadru- 
poles. To get good results, N must be large enough that 
the harmonics outside the matrix are of a sufficiently 
high order to be attenuated by the Qi/(Qg-m2) term. In 
practice, it has been found better to omit the zero 
order harmonic , which has a form similar to the coupling 
coefficient, from the matrix. 

Such a scheme works well in the ISR, if the quadru- 
pole distribution is symmetric and uniform and provid- 
ing there are sufficient lenses that harmonics of or- 
ders up to twice the Q-value can be included in the 
matrix. Unfortunately, there is virtually no space left 
in the ISR outer arcs and it was not possible to install 
the necessary additional quadrupoles. The method, how- 
ever, has been tested with good results for closed 
orbit correction with 36 correctors4. 

6. Insert ion Method 

For the ISR, it was decided to relinquish control 
of the median plane tilt and to concentrate on the 
coupling. This method relies on making local bumps in 
upz in the inner and outer arcs of the machine with net 
real or imaginary coupling. Linear combinations of 
these bumps then give any desired coupling vector. As 
the a 

EZ 
is localized in the bumps in the arcs, there 

will e no median plane tilt in the intersection re- 
gions and hence no loss of luminosity. 

Maximum lapzl and tilt values for ICI = 0.05 
for standard ISR working conditions 

7. Measurement of C 

The testing and operation of the skew quadrupole 
scheme depends almost entirely on the coupling meter at 
present installed in the ISR’. Since this meter can 
only measure [Cl, the phase of coupling vector can only 
be found indirectly by making various combinations with 
known vectors, i.e. calculated vectors. 

It should be mentioned that since ICI is independ- 
ent of the origin, i.e. of the observer’s position, the 
pick-up used by the coupling meter has no bearing on 
the choice of origin discussed earlier. The origin is, 
in fact, only determined once a “known vector”, e.g. the 
coupling due to the first circuit QSl is ascribed a 
phase. 

8. Checking and Applying the Revised Coupling Scheme 

In order to check the revised compensation scheme, 
the amplitude and phase of the coupling vectors associ- 
ated with each circuit was measured. Since only ICI can 
be measured, as explained above, this could only be 
done indirectly. Firstly, 
in the basic machine IBI 

the amplitude of the coupling 
was measured. A series of 

seven measurements was then made of resultants I3+QSil, 
where QSi is the calculated vector excited by the ith 
quadrupole chain. By varying the phase of B, a best fit 
can then be found for the measured data. This fit is 
shown in Fig. 2 and the measured and calculated data 
are recorded in Table 2. In reality, this is a method 
for measuring the phase of the machine coupling vector 
B, but the quality of the fit obtained is a test of the 
validity of the theoretical values calculated for 
quadrupole chains. This quality expressed as 
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Fig. 2 Test of the Individual Skew Quadrupo 
(Working condition ELSA, Qx, Qz IZ 8.9) 
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TABLE 2 

Test of Individual Circuits in Ring 1 

.ts 

r I 4ssumed theoretical. data 

Circuit ICI 

1QSl 0.0072 

lQS2 0.0072 

lQS3 0.0143 

lQS4 0.0192 

lQS5 0.0097 

lQS6 0.0097 

lQS7 0.0192 
_-em--- _--_-- 

-- 
* (Bl is machine coupling. 

Phase 
-- 

-15.470 

15.44O 

7.38' 

21.13' 

-17.09O 

17.07O 

-21.16' 
_ _------ 

-- 

T 
Resultant Measured Calcul. 

Ia 

/a 

IR3/ 

14 

Id 

I@ 

lR7l __------- 
IV -- 

0.020 

0.020 

0,028 

0.030 

0.021 

0.023 

0,028 
__------. 

0.014 

0.0187 

0.0206 

0.0269 

0.0325 

0.0205 

0.0231 

0.0281 
--v-e-- 

Best fit .s for 9 = 44’ 

7 

=i 
R 

i=l talc. - Rmeas I 
= 0.0064 

’ i 

shows the scheme to be correct within the measuring 
accuracy of +O.OOl. 

1 

Once the individual circuits had been checked, the 
excitation of real and imaginary coupling vectors were 
tested in an analogous way (Fig. 3 and Table 3). The 
vector B needed to correct the machine is shown as a 
dashed line. 

It is only by chance that the bare machine vector 
in Ring 1 - Fig. 2 has the same phase as in Ring 2 - 
Fig, 3. Without low-8 and solenoid, Ring 2 had a bare 
machine vector at 11.5’ with ICI = 0.007. This gives 
the effect of the low-8 scheme and the solenoid as a 
vector of amplitude ICI = 0.0049 at a phase of 92O. 
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F ig. 3 Test of Real and Imaginary Coupling Vectors 
and Measurement of Machine Excitation 
(Working condition steel low-8 and supercon- 
ducting solenoid, Qx, Qz ,N 8.9) 

TABLE 3 

Test of Excitation of Real and Imaginary Vectors 
and a Measurement of the Ring 2 Coupling 

Vectors added by 
quadrupole scheme 

Best fit is for 0 = 44’ 

C Phase Resultant Measured Calcul. 

Re.C = 0.02 0’ Id 0.025 0.0273 

Re.C = -0.02 O” WI 0.013 0.0149 

1m.C = 0.02 90° Ml 0.027 0.0271 

1m.C = -0.02 90' I4 0.015 0.0152 
--------------r------*------------------~---------- 
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