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ENHANCED RESISTIVE WALL INSTABILITY FOR OFF-CENTERED BE * 
E.D. CourantpM. Month, C, Pellegrini and J.M. Wanga F 

Summary 

Beam occupation of a large fraction of the avail- 
able vacuum chamber, typical of high energy proton 
storage ring designs, results in an enhancement of the 
resistive wall instability, The effect is considered 
for ISABELLE during the current stacking procedure. 
Results for the coasting stack in its initial phase as 
well as for the injected bunches are presented. 
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High energy proton storage rings are designed to 
make maximal use of the available vacuum chamber aper- 
ture, This is dictated primarily by economic consid- 
erations, The accumulation of current in a typical 
high energy ring creates a rather unusual beam config- 
uration, In particular, we can have a ribbon beamin 
a circular chamber set off the central axis toward one 
side of the chamber in the median plane, It might be 
anticipated that such a condition could produce an en- 
hanced resistive wall instability. Since the thresh- 
old is a strong function of the chamber radius, we 

Figure 1. Geometry of stacking, transverse aperture, 

could even guess, a priori, that for an off-centered 
Bunches are injected at one edge of the cir- 

beam, the threshold would significantly decrease and be 
cular chamber aperture and accumulated in 

roughly related to an “effective radius” which is sim- 
the stack region on the other side of the 

ply the distance of closest approach to the chamber. 
chamber. The initial stack is a narrow rib- 
bon. 

To use the chamber aperture optimally for high 
current accumulation, we would like to be able to po- 
sition the beam as close as possible to the chamber on 
one side and to complete the ribbon with continued ad- 
dition of injected pulses, The total beam within the 
chamber, therefore, has a variety of phases: 1) In- 
j ected bunch, 2) “Small” stack-close to wall, 3) Wide 
ribbon-off center, and 4) Very wide centered ribbon for 
bunched stack, In the latter two phases, the standard 
treatment of the resistive wall instability,l leading 
to a dispersion relation for the coherent frequency 
shift, is not adequate. Since the induced fields are 
sensitive to beam position within the vacuum chamber, 
the resulting coherent modes have variations across the 
beam width. In other words, there is a coupling of one 
part of the beam to another through the image fields, 
This problem which involves the solution of an integral 
equation for the coherent oscillation mode has been 
treated by E1.D. Courant and M. Monthe2 They show that 
even for a wide ribbon there is a significant effect 
but that the enhancement tends to be most severe for’s 
narrow off-centered beam, We will, therefore, restrict 
ourselves to the case of a small stack. 

We treat, therefore, the two phases, that of a 
“small” stack close to one wall, corresponding to the 
initial period of the stacking process, and that of the 
injected bunches close to the other wall, The trans- 
verse aperture is shown in Figure 1. The case of the 
small coasting stack is presented in section 2, while 
that of the injected bunched beam is detailed in sec- 
tion 3. ISABELLE3 parameters are used throughout, Some 
implications for the ISABELLE design resulting from the 
resistive wall enhancement are discussed in section 4. 

2. NARROW COASTING STACK 

The development of coherence in the beam is in- 
hibited by a frequency spread, We take this spread to 
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arise from the spread in linear betatron tune. 
In 
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zed tune variable, u, we 
2 that the dispersion rel 

the coherent frequency, uc, can be written 

can show 
.ation for 

l=G’e du 
- c (1) 

The variable u is related-to the betatron tune v by . 
u = (V-vo)/d, where V. is the central tune and d is the 
&+idth of the tune distribution, For a finite width, 
f d, we have, range [ul = f 1. u, is related to the 
coherent frequency ‘U by uc = ‘n-v0 -U)/U]ol/d, with q 
the revolution frequency (rad/sec) and n is the azi- 
muthal mode number‘rn (integer) > ‘~~1. For p(u) nor- 
malized to unity, the quantity coupling the beam to it- 
self, G, can be expressed by - 

G= L- ).'PR 11 l- _ 1 tan-l A 1 
ed / Ywovo \ 82v2 L Ah 

1 1 
r;S~-------, 
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Here, I is the coasting beam current, 
d is the tune spread k width, 
R is the average radius for the beam orbit 

B,Y are the beam velocity (with respect to cj and 
beam energy (with respect to the rest energy) 
respectively, 

V. is the central betatron tune, 
wo=2 17 f,, with f. the revolution frequency 

3 
is the classical proton radius (1.54~ 10s18m),, 
is the beam k-width, 

h is the beam &-height, 
b is the chamber radius, 

to is the beam position in the vacuum chamber as 

6 
a fraction of the chamber radius, and 

eff is the effective skin depth at the frequency 
for mode n, f, = (n-Vo) f,. 

The beam position is at x0, and to = x0/b. 

The time evolution of the “unstable mode” has been 
taken to be of the form esiw; we thus seek solutions with 
Im(u)rO. When it exists Im(w) is just the e-folding growth 
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rate, Im(u) = l/T t 0. The threshold is the limit of 
zero growth rate, i.e., Im(u) + Ot. Since u 

8 
and ~1 

differ in sign, a threshold solution to the ispersion 
relation (1) is found by taking the limit Lm(uc) + 0”. 

In ISABELLE, the frequency for the lowest unstable 
mode (n = 23, v. = 22.62, f, = 79.64 kHz) is f, = 
30.26 Hz. At this frequency the skin depth for stain- 
less steel, 61 = 2.89 mm and for copper, 62 = 0.38 mm. 
These are interesting in that the ISABELLE vacuum 
chamber is a double walled structure, with the inner 
stainless steel thickness, 1 mm. Thus, the fields at 
this low frequency penetrate through the stainless 
steel into the copper where they are attenuated, In 
this case, the skin depth is a complex number, Satis- 
fying the appropriate boundary conditions at the stain- 
less steel surface as well as at the stainless steel- 
copper interface, we can find the effective skin depth 
in general : 

6 
eff = 

6 
1 ! 

Y2 
- (tjl-tj2) e-2K1q 

61+62 t (6l-62) em2’lq 
3 

(3) 

where q is the stainless steel thickness, and x1 = 
(W/f+ For the ISABELLE parameters listed in 
Table I, we find for the lowest n = 23 mode, 6,ff = 
(1.414 - 0.8161) mm. 

Table 1 General ISABELLE Parameters 

Average radius ,R 599.5 m c = 4 2/3 CAGS 
central tune, vd 22.62 
Revolution 79.64 kHz f,= 8cf2nR 

frequency, f, 
Beam energy, Y 31.3 y = E/mc2(E=29.4 GeV) 
Chamber radius, b 4.4 cm 

Resistivity, 1.0 x 10-6 Qn 
ss, PI 

Resistivity, 1.7 X 1Om8 ban Layer outside ss 
CUB P2 

Thickness, 1.0 mm 
ss layer,q 

Azimuthal 23 
mode, n 

Resonant frequency 30.26 kHz 
for mode n, f, 

Skin depth,ss,bl 
i 

2.89 mm 
Skin depth,Cu, 62 0.38 mm 
Thickness, Cu m 

layer 
Complex effective (1.414 

skin depth, 6eff -0.816i) mm 

chamber 

n = 24,25......also 
possible 

f,=(n-v,) fo (n=23) 

6 = ( pc/nZofr)h(n=23) 
z,= 120 l-l i-2 
Effectively,thickness 

>> 62 
Eq. (3) (n=23) 

The ISABELLE beam parameters are given in Table II 
while the “small” beam is defined in Table III. 

The threshold depends on the “current-tune” den- 
sity, i = If2d. This quantity has a design value 
essentially independent of the amount of current stack- 
ed. We can therefore use this value even in the case 
of a 20% stack. To be definite we define a normalized 
current, 11 = i/i, = I/I,, where the value 1 = 1 corre- 
sponds to the threshold for a small centered beam with 
a uniform tune distribution, Introducing ?j explicitly, 
we can write for the dispersion relation (l), 

l=l;;j+-$du, 
-C 

*Y 

where G is evaluated with the nominal current and tune 
spread given in Table 11. Thus, we can see how the 
threshold changes for a different distribution or as a 
function of where the beam is within the chamber. 

Table II ISABELLE Beam Parameters 

Average vertical 8, 28,3 m @V p (2/3)8min 
B 

Ave:age 
+ (l/3) &ax 

2.27 m xp a (2/3)Xp,max 
dispersion, X 

Average P 46.7 m 
t (1/3)Xp,min 

& E (2/3)pmax 
horizontal 8,8~ + (li3) &in 

Beam emittance, 15ll X 1O*6 rad-m 

EV’EH 
Vertical +-size,h 
Horizontal,betatron 

3.68 mm 
4.73 mm 

h = (E,$inv$ 
$3 = o$gw 

+size,A 
Nominal B fu 1 beam 8A 

current, I 
Nominal full tune rt9.2 X loo3 

spread, k d 
Normalized current- 433.5 A/unit i,= I/2d 

tune density, io tune 

Table III Beam Parameters with Point Beam Model 

Beam current, I 1.6 A 20% Nominal full current 
Tune spread, M i 1.84 X 10m3 20% Nominal spread 
Momentum spread, k 0.1% 20% Nominal stack spread 

16 
Momen urn 4 size, ! 2.27 mm 

zontal $ size,A 7.0 mm A = Ag t Ap 

In Figure 2, we plot the threshold current, T/(to), 
as a function of position in the chamber. 

‘SMALL BEAdTHRESHOLD FUNCTION 

lo- 

t \ \ \ \ 1 

Figure 2. Current threshold function for “small beam” 
case, ‘tl is normalized to 1 at chamber-cen- 
ter with uniform distribution. to is ratio 
of distance off center to chamber radius, 
I. Uniform density distribution. II. Equal 

sin2 flanks: 80% flat. 

The curves in this figure are thresholds in the sense 
that Im(uc) = 0'. Each solution corresponds to a 
frequency shift function, uR(to) = Re(uc), when Im(u,) 
= o-. This frequency shift function is plotted in 
Figure 3. 

Thus, we see that for the “small” coasting stack, 
the threshold at the chamber center is determined by 
the beam self-field term (the so-called capacitive 
term). As we move off center, the image fields tend 
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This quantity gives us a feeling for the demands on a 
feedback system to control growing oscillations if 
Landau damping from tune spread is insufficient, 

‘SMALL BEAM’ FREQUENCY WIFT FUNCTION 
I I 1 I I I I , 

Figure 3. Frequency shift function for “small beam” 
case, to is the ratio of distance off center 
to chamber radius, I, Uniform density 
distribution. II. Equal sin* flanks: 
80% flat. 

to cancel the self-field term. However, the resisti.ve 
term growth lags behind the cancellation; therefore, 
the threshold temporarily increases. The cancellation 
i.s complete and the threshold peaks when the real 
frequency shift goes through zero, After this the 
wall contrFbution dominates and the threshold rapFdly 
drops. These effects can be seen qualitatively from 
an examination of the coupling function, G, given in 
Eq. 2. 

The fast decrease in the threshold is impressive, 
with the current down by two orders of magnitude at a 
point between 10% and 20% from the wall, i.e., 5 mm 
to 10 mm from the wall. 

To estimate the growth rate, i.e., a measure of 
the time scale of growth that can be expected under 
unstable conditions, we go back to the dispersion 
relation (1) and take a delta function distribution, 
P(U) = 6(u). Thus, we find for the growth rate l/T = 
wad Im(G). This is plotted in Figure 4 as a function 
of to. 

.-FOUHNG GROWTH TIME FOR 4 POlHT BEA” F&I AewE THREWOLD 

Figure 4. e-folding growth time for a point beam far 
above threshold, The current I = 1.6 A 
(20% of ISABELLE full current), 7 is in 
units of msec. t, is the ratio of the dis- 

3. INJECTED BUNCHED BEAM 

The ISABELLE current accumulation process involves 
the injection of a bunched beam with *w 4.5 mHz bunch 
frequency from the AGS,’ Using five pulses from the 
AGS, the ISABELLE inject ion orbit is filled with 57 
equally spaced bunches, Assuming these hunches to have 
equal intensity, there are 57 normal modes of trans- 
verse coherent oscillations. The normal mode fre- 

in 
quenci .es are given by4 us = ‘Lb (&M t s-vo) with s = 
1 ,.... .,.M. Here, M is the number of bunches (M=57 
the ISABELLE case treated) and s is the mode number; 
v is the 
u):: is the 

central betatron frequency for the bunch, 
revolution frequency in radianslsec, and 4 

i.S any integer. 

For each normal mode, 
lation similar to (l), 

we have a dispersion re- 

leLul 1 = GB J-1 uwuc d” (5) 

Here, u = (v-v,)/dB, with dB the half width of the tune 
distribution. This distribution is taken to be para- 
bolic: p(u) = 3/4 (l-u+, The normalized coherent 
frequency uc is given by u, = [&M t s-V0 -w/‘+,:/dg. 
The quantity GB takes into-account the bunch struc- 
ture of the beam: GB = NB (Us t i Vs)/dB, where NB is 
the number of particles per bunch and 

Us t i Vs = 

M 1tt 2 
t (lti) A T 6 

eff(““) O (6) 
c=‘l- b3(l-to2)3 * 

The direct beam term is written in terms of the beam 
space charge tune shift, 6’~. For an elliptical beam 
of semiaxes A, horizontal, and h, vertical and for a 
parabolic density distribution, the vertical tune shift 
is given by 

2r RMNB 
6v = J , (7) 

wJwo h (A+h)B 

where B is the bunching factor, bunch length/bunch 
separation, B = ML/2lTR, with L the bunch length, No- 
tice that the bunch is taken to be parabolic in den- 
sity, while the stack density is almost uniform (we 
have taken 20% sin* tails). The quantity A is given 
by, 

r RM 

A=&T* 
0 

while 6,ff is the effective complex skin depth defined 
by (3) for the double walled chamber. It is evaluated 
at the unstable frequency, u1 fi: (&M t s-Vo)tio. 

In obtaining the dispersion relation (5), we have 
taken the betatron frequency spread to be associated 
with an “external” variable, the momentum spread, 
This provides Landau damping. In the bunched beam case 
this is only valid if we are dealing with a growth 
condition occurring on a time scale sufficiently short- 
er than the synchrotron oscillation period, A quan- 
titative criterion for this is that the zero frequency 
spread growth period, Tg, be larger than the synchro- 
tron period, Ts: that is, Tg < rs. We will see that 
this condition is satisfied in our case. 

tance off center io the chamber radius. 



In evaluating the image contribution to GB [the 
second term on the rhs of (6)1, we have taken a “point” 
bunch. While the imagFnary part of f Geff(U’) is con- 
vergent, the real part is divergent. For a bunch of 
nonzero length, the skin depth 6,ff must be multiplied 
by a phase factor which ensures convergence, We can 
take account of the nonzero bunch length in a simple 
manner by introducing a cutoff in the sum, We termi- 
nate the series at tc, corresponding to the inverse 
of the bunching factor: t, = l/B. This is equivalent 
to limiting the contribution to only those frequencies 
with wavelengths longer than the bunch length, a valid 
approximation for studying rigid bunch motion. 

The rise time Tgof an unstable oscillation is 
determined by the term V,: l/Tg = SdB Im(GB) = ‘+,NBVs. 
For the most unstable mode for which s *w Vo, we have 

% = 50 msec (on axis, to = 0). This is enhanced by a 
factor of 35 at to = 0.8, giving Tg = 1.4 msec. Even 
the growth period at the chamber center is about four 
times shorter than the synchrotron period for ISABELLE 
at injection which is about 180 msec. See Table IV. 

Table IV Injected Bunch Parameters 

Energy (GeV) E = 29.4 
Number of protons/bunch NB = 2.5 x 1011 
Horizontal emittance (rad-m) EH = 15rr x 10-6 
Vertical emittance (rad-m) EV = 15rr x 10’6 
Longitudinal emittance (e i-set) = 1.0 
Beam height (cm) 2 = 0.58 
Beam width (cm) 28 = 0.78 
Momentum spread Aplp = 10-3 
Bunch length (m) L = 10 
Synchrotron frequency/U+, vs = 6.9 X 1O-5 
Synchrotron period (set) l..S = 0.18 

The dependence of Tg on to is, in fact, the same as for 
the coasting stack, Figure 4. However, the magnitude 
of Tg should be increased by a factor of 5. 

Thus, we have that Landau damping from linear tune 
spread will be effective, as we have assumed in writing 
the dispersion relation (5). This tune spread arises 
from bunch momentum spread and the ISABELLE chromatic- 
ity. With an overall momentum spread in the bunch of 
0.1% and a chromaticity of 5 = 2, we have a frequency 
spread d, = i 1 x 10-3. Taking a parabolic distribut- 
ion, we Fan calculate the threshold for transverse 
coherent rigid bunch oscillations, The result is shown 
in Figure 5 where the threshold, in terms of the 

Figure 5. Thresh- 
old for injected 
bunched beam in I 
ISABELLE. Nth is 
the maximum allow- 
able number of 
protons per bunch 
without feedback, 
to is the ratio of 
the distance of the 
bunches off center 
to the chamber 
radius. 

maximum number of particles per bunch, Nth, is given 
as a function of the ratio of x0, the distance of the 
bunch canter from the chamber center to b, the chamber 
radius: to = x,/b. The peak in Nth at to m 0.76 
corresponds to Us passing through the value zero, 
meaning a cancellation of the direct space charge with 
the reactive part of the image contribution. Once this 
cancellation occurs, the image term dominates and the 
enhancement is rapid and evident in the figure, The 
bunch parameters used in the calculation are given in 
Table IV. 

4. CONCLUSIONS 

We have reviewed the impact of the resistive wall 
instability as it relates to the use of phase dis- 
placement stacking. Specific computations for ISA- 
BELLE are presented. The essential features which 
cause an enhancement of the instability are (1) the 
use of a large part of the chamber aperture to accu- 
mulate large currents and (2) the injection of bunches 
with high transverse density for the purpose of opti- 
mizing the luminosity of the colliding beams, 

The initial coasting stack is set off the chamber 
center close to the wall. For the nominal allowed tune 
spread, a large reduction in the threshold current 
results with the details depending sensitively on how 
close to the wall the first pulses are stacked, A 
factor of 10 to 100 decrease in threshold occurs if 
80%-90% of the aperture is to be used. e-folding 
growth rates tend to be high under unstable conditions 
(7 *w 1 msec to < 0.1 msec) . 

Because of the high transverse density of the in- 
jected bunches, the threshold intensity, Nth, the 
maximum number of particles per bunch, is low. Even 
without the wall enhancement, the threshold is 
N,h - 4 x do protons/injected bunch. This is well 
below the design value of 2.5 X 1011 protons per bunch. 
At the injection orbit, about 80% to the wall, the 
growth periods are short, Tg *y 1 msec. 

One way to increase the threshold is to increase 
the betatron frequency spread. This may be accomplish- 
ed by increasing the chromaticity from its design value 
with a sextupole adjustment or by adding an octupole 
term, which introduces a tune spread with betatron 
amplitude, This means modifying the ISABELLE design so 
as to extend the available betatron tune working line, 
We might mention that an octupole distrFbuti.on could 
produce “curvature in the working line” and thereby 
cause localized beam instabilities (brick-wall effect). 

Another possibility to cope with the unstable 
conditions is to employ a direct feedback system. 
Such a system should provide coherence damping on a 
time scale less than 1 msec and should also be capable 
of acting on each injected bunch independently. Fur- 
thermore, the injected bunches and coasting stack must 
exist simultaneously, thus necessitating a combined 
feedback process. Finally, the injected bunches 
will have finite initial coherent amplitudes due to 
injection errors, therefore, placing an increased de- 
mand on the feedback system in both speed and strength. 
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