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APPLICATIONS OF DISTRIBUTED MICROPROCESSORS IN THE CESR CONTROL SYSTEM 

Donald B. Reavesl, Frank W. Dain’, and Ray Helmke' 

Abstract 

Intelligent microprocessor based Interfaces are 
used to relieve the main control computers of time 
consuming tasks requlrlng real-time response. The 
baste system consists of a Zllog Z80 CPU, CESR control 
system interface, read-only and read-write memory, and 
input/output address decode circuitry. One application 
employs inexpensive potentiometers to provide a cost 
effective operator-machine interface with excellent 
response. It uses a 64 channel analog-to-digital con- 
verter to scan 30 two-gang potentiometers, calculating 
the change in position of each knob 60 times a second. 
A second application uses multiprogramming techniques 
to achieve separate position setting of ten motor- 
controlled devices with adaptive feedback. The 
controller can accept high-level commands to let the 
microprocessor guide the device to its destination, or 
low-level commands to let the main computer retain 
complete control of the device. Applications include 
RF phase-shifters and attenuators, and motor-driven 
variacs. 

Introduction 

The overall relationship between parts of the CESR 
control system is illustrated in Figure 1. The control 
computer (a PDP-11/34) communicates with the 
microcomputers via a data link called the X-Bus3. Like 
all other interface cards, the microcomputers are 
mounted in one of 16 crates which attach directly to 
the X-Bus. 
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Figure 1 

The common part of all applications which are 
based on microcomputers is called the microprocessor 
foundation logic. It consists of a simple 
microcomputer and the circuitry necessary to interface 
it to the bus in the crate (C-Bus). The computer 
comprises the central processing unit, or CPU, its 
program and data memory, the input/output devices, and 
the bus structure which connects them. 
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The CPU used in the microprocessor foundation 
logic Is the Zilog 180, a typical general purpose 8 bit 
microprocessing unit. It was chosen because it is 
compatible with Intel's 8080 processor and in addition 
offers many enhancements. An input called Nonmaskable 
Interrupt can be used to interrupt a program, cause 
execution of a special routine, and then return to the 
original program. It Is used in the Motor Controller 
application to allow the CPU to measure time intervals; 
NM1 Is asserted at regular intervals and the interrupt 
routine increments a counter. 

The C-Bus Interface allows the control computer to 
perform direct memory access operations in the 
microcomputer's memory. ,Use of DMA can greatly 
simplify many communication problems. For instance, 
the CPU may keep an up-to-date table of information in 
its memory for use by the control computer. When the 
control computer requires the data, it can get them 
directly without having to wait for the CPU to perform 
transfer functions. The CPU need only acknowledge the 
bus request asserted by the C-Bus interface, an action 
which is performed automatically in a manner which is 
transparent to the program which the CPU is executing. 

Input/output devices in this system are referenced 
in the same manner as memory. This reduces the 
complexity of the C-Bus interface and allows the 280 to 
use data from input devices directly in instructions 
such as add or subtract. (For devices which are 
implemented as standard Z80 inputs, using input 
addresses instead of memory addresses, only load and 
store instructions are allowed.) 

The microcomputers are programmed in assembly 
language using a commercial cross assembler which 
resides on the lab's main computer, a Decsystem-IO. 
Object code is then transferred to a PDP-11 where it is 
either programmed into an EPROM or loaded directly into 
the microcomputer's memory via the X-Bus. The direct 
loading process is used during hardware and firmware 
testing to reduce the time required for changing 
programs. 

The foundation logic, which required about 3 man 
months to implement, uses 50 TTL and MOS LSI chips and 
Is mounted on a standard 9 by 12 inch C-Bus board. The 
Knob Scanner and Motor Controller applications require 
an additional 15 and 50 chips respectively. 

Microprocessor Knob Scanner 

The purpose of the knob scanning system is to 
provide the operator with computer inputs in the form 
of control panel knob positions. Because these data 
are to be used to effect changes in program variables, 

the Information is most useful in incremental form. 
Ideally, the incremental change reported should be 
Proportional to the aIiIOUnt of rotatlon of the knob, 
While this IS not beyond the ability of commercially 
available hardware (e.g. shaft encoded knobs), it is 
not absolutely necessary. A smooth, monotonic response 
has proven to be sufficient. 

Hardware Knob 

Each knob consists of two 1K potentiometers on a 
single shaft which are used as voltage dividers to 
provide inputs to an analog to digital converter. The 
tW0 pots are mounted 180 degrees out of phase, and have 
had their stops removed to allow unlimited rotation. 
Since the approximately linear region of each pot 
extends over more than half a revolution, at least one 
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of the pots is always in this "linear" region. The variable on an adjacent numeric display. 
voltage curves for the two pots in a sample knob, 
plotted as a function of angle, are shown in Figure 2. In an earlier implementation in which the control 

computer itself scanned the knobs 20 times a second, 
VOLTAGE CURVE OF KNOB increments were often calculated incorrectly because of 

the low sample rate. In the Knob Scanner, the tlme 
5 

interval between samples of a given knob varles wlth 
the amount of calculation being performed by the CPU. 
This time varies from l/60 of a second, when no knobs 
are being turned, to l/40 of a second, when all 30 
knobs are being turned. This represents a significant 
improvement over the earlier implementation. 
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Figure 2 

Interface AnalOQ to DIgital 

The Microprocessor Knob Scanner consists of an 
analog input interface built upon the Microprocessor 
Foundation Logic. This interface is made up of three 
basic parts: an input multiplexer, a 12 bit analog to 
digltal converter, and control registers necessary for 
the CPU to manipulate the interface. The time required 
for a conversion is 25 microseconds, so that the 
maximum rate is 40,000 conversions per second. 

Knob Scanning Algorithm 

The knob scanning algorithm is an infinite loop 
which first determines if the control computer has 
requested a particular action, such as halting or 
clearing the incremental data. It then updates the 
incremental data for each knob. 

The increment of a knob is determined as follows. 
By considering Figure 2, one can see that if both 
voltages are within the bounds indicated by the 
horizontal lines, the one with the smaller slope 
represents the linear region for the associated pot. 
Thus, if both pots are now and were on the last pass 
within these bounds, the increment is chosen to be the 
smaller of the changes in the pots. If only one pot is 
within these bounds, the increment is chosen to be the 
change in that pot. Otherwise, the change in pot B is 
arbitrarly chosen. 

Communication between the control computer and the 
Knob Scanner is accomplished by reserving arrays of 
information in the microcomputer memory. In addition 
to the raw analog values read from the pots and the 
Incremental changes in the knobs, a Control/Status byte 
is available which indicates fluctuations detected in 
the power supply and is used by the control computer to 
initiate certain actions. 

Performance 

Knob Scanners have been used in the control system 
since November 1977, and have proven to meet their 
design requirements reliably. 

When the calculated position of a knob undergoing 
constant rotation is plotted as a function of time, the 
response is shown to be quite linear, as long as the 
knob is turned at a reasonable rate. The only 

characteristic of the knobs In which the small 
nonllnearity is noticeable is that if a knob is 
returned to its original position after some use, the 

associated variable does not exactly resume its 
orlglnal value. This phenomenon generally does not 
cause any problems, since the operator observes the 
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In order to achieve the same performance using a 
PDP-11/34 approximately 40% of the available processing 
time Is required, as measured by a program written by 
S. Peck4. In a system where control panel servicing 
requires 50% of the processor, using the control 
computer to perform the Knob Scanning algorithm would 
leave virtually no time for application programs. If 
the equivalent of two Microprocessor Knob Scanners 
(i.e. 60 knobs) were required, the control computer 
would simply be unable to read each knob often enough 
to achieve acceptable results. 

Microprocessor Motor Controller 

Several machine variables in the lab are remotely 
controlled via motors with simple directional controls. 
These include RF phase shifters and attenuators, and 
motor driven variacs. Unlike other machine variables, 
there is no straightforward way to set these variables 
to predetermined values. Instead, only simple increase 
or decrease commands are easy to implement. 

The purpose of the Motor Controller is to 
transform the desired destinations into directional 
commands for each of ten motors. In addit,ion, the 
Motor Controller allows the operator to issue 
directional commands in order to fine-tune the 
associated machine variables. 

Motor Hardware 

To indicate the precise location of the device, an 
analog signal is sent to the controller. The operator 
specifies the value to be assigned to the associated 
machine variable in terms of the digitized values of 
this signal. The device being moved by the motor can 
travel only a limited distance in either direction. To 
prevent damage to the device, two limit switches turn 
the motor off when the end of travel is reached. A 
single 24 volt signal is sent to the Motor ContrnllPr 
when either of the switches is actuated. Control of 
the motor is accomplished via two 24 volt signals. 
Each turns the motor on,in a particular direction. If 
neither is asserted, the motor is off. 

Hardware Interface 

The Motor Controller consists of three interfaces 
built upon the Microprocessor Foundation Logic. Each 
interface has ten channels, so that ten motor 
controlled devices can be serviced. The analog input 
interface is similar to that used in the Knob Scanner. 
A high level digital input interface uses opto- 
isolators to isolate and translate the limit switch 
input signals to TTL levels. These inputs are fed into 
latches which can be read by the CPU or C-BUS 
interface. A high level digital output interface 
performs a similar function for output. 

An interrupt circuit, which supplies a time base 
for scheduling, is a simple oscillator that provides a 
short pulse to the NM1 input of the 280 every 5 ms. 



In order to prevent a failure on the part of the 
Motor Controller from issuing invalid commands to its 
output devices, a failsafe output enable circuit has 
been Implemented. It consists of two one-shots, 
triggered by the CPU, which are used to enable the 
tri-state outputs of the latches containing the motor 
direction data. If the latches are not enabled, all 
motor direction outputs are turned off. To keep the 
outputs enabled, the enable one-shot must be 
retriggered at time intervals no greater than 20 ms. 
The trlgger one-shot prevents the enable one-shot from 
being trlggered during a failure by allowing it to be 
triggerred for only a very short time. When adjusted 
wow-ly, there are only six possible combinations of 
two instructions which can trigger the enable one-shot, 
virtually eliminating the possibility of enabling the 
hardware during a failure. 

Motor Controller Algorithm 

The Motor Controller algorithm consists of three 
basic parts: the TECO (Timed Electrical Contact 
Output) algorithm, the interrupt handler, and the reset 
algorithm. 

The TECO algorithm allows the operator to issue 
directional commands for fine-tuning machine variables 
by accepting an instruction specifying a direction and 
a length of time for which a motor is to be run. This 
is implemented by keeping an array, TICKS, which 
contains for each motor the number of tlme units until 
the motor is to be turned off. The main program loop 
examines these values and, using information stored in 
a direction array, turns the motors on or off 
accordingly. 

The interrupt handler, which is executed every 
5 ms, decrements any nonzero entries in the TICKS 
array. It also increments a variable which is used by 
the reset algorithm to determine time intervals. 

The reset algorithm operates by first starting the 
motor in the required direction, end then turning it 
off at the proper time so that the device will coast to 
a stop at the requested destination. This process is 
repeated until the position of the device is within a 
small value of the destination. 

The Motor Controller learns the characteristics of 
the devices it controls, so that after some practice it 
will be able to perform a reset in a single try. This 
is accomplished by keeping a table of estimated values 
to determine how far each motor will coast when turned 
off. The possible destinations are partitioned into 
segments. For each of these segments, the table 
contains the expected amount the motor will coast when 
turned off from either direction. After each 
successful reset operation, the appropriate entry in 
the table is set to the observed coast value. 

The TECO and reset algorithms can be combined into 
a single program by enclosing them ‘in a loop which 
determines at the beginning of each interation which 
algorithm to execute. The resulting program will 
control only a single device, and therefore needs 
modification to control multiple devices. BY a 
strlghtforward procedure, the program can be 
generalized to service any number of devices In a 
slmple multitask environment'. In the present 
implementation, each device is serviced about 100 times 
a second. This seems to be more than adequate. 

The Motor Controller provides the control computer 
with information about the general status of the 
controller and the status of each device. This 
includes an indication of which algorithm (TECO or 
reset) is being executed, the location of each device, 

whether the device is stuck or Is at an extreme of 
travel, and how many trys were necessary to perform the 
last reset operatlon. 

Performance 

At the present time, a microcomputer has been 
controlling the RF phase shifters for only a few 
months. Fairly thorough testing has proven it quite 
capable of meeting Its design specifications. However, 
the real test of the reset algorithm will be made when 
the Llnac and Synchrotron are routinely switched 
between e+ and e- settings. 

Error Detection and Reliability 

Methods used for detectjng and correcting errors 
were Intended to cover all cases which could be handled 
in the firmware. These include hardware errors 
external to the microcomputer such as knob power supply 
fluctuations or a motor controlled device being stuck, 
and operator errors such as attempting to set a motor 
controlled device past its extreme. Algorithm errors, 
such as being unable to move a device to a particular 
poslt1on within a reasonable number of tries, are also 
reported. 

Errors in the microcomputer itself are handled 
either by standard X-Bus mechanisms or by a handshaking 
mechanism involving the control computer. All 
microprocessor based applications include a 
Control/Status byte. One of its functions is to allow 
the control computer to determine whether the 
mlcrocomputer is executing its program. At regular 
intervals, the control computer clears one bit of this 
byte. During normal operation, the microcomputer sets 
the same bit. If the control computer detects this bit 
in the zero state after an appropriate delay, it IS 
assumed that the microcomputer has failed, and 
appropriate action is taken. 

Errors which are fatal to the microcomputer's 
program integrity are prevented from affecting output 
devices In the Motor Controller by use of the failsafe 
output enable circuit. 

These measures seem to be adequate for the 
problems which have arisen to date. It is not 
presently known how the large scale integration 
components used in the microcomputer, the CPU and 
memory, will stand up to the environment in which they 
must operate. Data concerning radiation effects on 
these components are not available. It will be 
interesting to see if the error mechanisms listed above 
will be adequate to handle any problems which arise. 

Cost Effectiveness 

It might be argued that, including total 
development time, the cost of these two projects 
exceeds the cost which would be incurred by using 
alternate solutions. It is certainly true that using 
different hardware (shaft encoded knobs Instead of 
potentiometers, and stepping motors instead of DC 
motors) would have simplified the algorithms and 
enhanced the results of these projects. However, the 
development of a simple yet flexible microcomputer 
interface will continue to pay for itself as other 
applications arlse. 

3. R. Helmke, S. Ball, and D. Rice, Interface Hardware 
for the CESR Control System, E-14 this conference. 

4. Personal communication. 
5. D.B. Reaves, Applications of Distributed 

Microprocessors in the CESR Control System, 
Master's thesis, Cornell University, 1979. 

3447 


