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Introduction 

The low-energy corrections of the CERN Pro- 
ton Synchrotron beam closed-orbit are much facilita- 
ted by the application of suitable currents in the addi- 
tional coils to achieve a horizontal or vertical field. 
The horizontal corrections are obtained by means of 
coils known as Back-Leg-Windings (BLWs). In addi- 
tion to the normal low-energy corrections, these 
coils could also be used to perturb the beam by a gi- 
ven amplitude depending on the energy, the radial be- 
tatron oscillations per turn QR and the location where 
this “bump” is required, An added stipulation of COUP- 
se is that the achievement of the desired perturbation 
of a given amplitude should not set-up unnecessary 
oscillations of any significance elsewhere in the beam. 

The localised perturbation could have several 
uses for the beam gymnastics or diagnostics: it can be 
of assistance as a probe to calibrate position moni- 
tors; it can help in localising throttle points of the 
beam due to multipolar effects (or mechanical obstruc- 
tions) or it can also be used for intensity optimisation 
by moving the beam to its position of maximum inten- 
sity. 

This contribution summarises the basis upon 
which this probe-like activity of the beam is carried 
out on-line via the Main-Control-Room console using 
controlled power supplies, function generators and 
multiplexer. 

A novel aspect of this work shows that it is pos- 
sible to achieve the perturbation of a given amplitude 
at any desired location in the P’S ring by the applica- 
tion of equal currents in the four well-chosen BLWs, 
The equal current condition holds not only for an ideal 
machine Q=6.25 but also for any other operational Q 
value, This analytic basis much simplifies the compu- 
tations and, would also make hardware reductions 
possible in the future because in principle, only one 
function generator is sufficient for all 4 multiplexed 
power supplies to the PS-BLWs. 

General Bat kground 

The I3LWs have been wound at the focussing sec- 
tors of the 100 PS magnets which repeat in the FOF 
DOD manner, i. e., each magnet consisting of a fo- 
cussing (F) and defocussing (D) half-sectors with a 
field-free straight-section (0) between any two mag- 
nets. Each focussing sector has one turn of a BLW 
connected in series with the turn at the next focussing 
sector wit11 the straight section (0) in between, resul- 
ting in a total of 50 BLWs of two turns each, 

Using the PS numbering scheme, the 50 BLWs 
are effective at every straight section between 1 and 
09 and have a maximum upper limit of 10 Amperes 
applicable in each winding via the 50 new power sup- 

plieslj 2. The availibility of these special power sup- 
plies implies a significant improvement over the ear- 
lier schemes3j 4; given the PS radial QR at a given 
energy and the position where a local perturbation is 
desired in terms of the straight section number, it is 
possible to deform the beam at that location by a spe- 
cifed amplitude within the limitations of the 10 A appli- 
cable current. 

*) Presently at SIN, Villigen, Switzerland 
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We need to apply currents in four different 
BLWs to produce a symmetric and closed deformation 
at a desired location without setting up undesirable os- 
cillations elsewhere in the ring. Hence the 4 BLWs 
have an additive effect in producing the perturbation 
required at a given location and a compensatory effect 
elsewhere. 

In terms of the normalised phase space, Fig. 1 
illustrates the application of the currents in the 4 
BLWs to produce the deformation Ii at a straight sec- 
tion location n; Fig, 2 (a) shows1 the choice of the 
4 BLWs required for the location n being an even 
straight section while Fig. 2 (b) shows the similar 
choice for n being odd. In both cases, the 4 BLWs se- 
lected are located at odd straight sections as physi- 
cally placed in the ring. 
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Computational and Control Requirements 

For a given machine radial QR and a specific 
low-energy time point in the PS cycle (pulse A, B 
or C depending on synchronisation), it was envisaged 
to perturb the beam at a given straight-section loca- 
tion (NSS) in the ring by a certain amplitude in equiva- 
lent millimetres. The freedom to perturb the beam 
by a desired amplitude is obviously limited by the to- 
tal amount of current (10 A) that may be applied in any 
one of the required 4 power supplies, The same BI,Ws 
are also used for horizontal dipole corrections and 
therefore, some of them may already have some exi- 
sting current in them, Hence, depending on the loca- 
tion where the “bump” is required, the upper limit is 
usually less than 10 A. 

Naturally, this limit is not only different for odd 
and even n but it has also to be somehow translated 
from maximum Ampere value for each of the 4 BI,Ws 
into a single overall maximum possible perturbation 
(KMAX) at a given location NSS=n. This translation 
and conversion depends on the known parameters of 
the PS and is dealt later. 

Given the upper perturbation limit of KMAX eq. 
mm, it was envisaged to be able to input at the con- 
sole the desired ‘bump’ amplitude KREQ such that 
KREQ<KMAX. The inputting of KREQ was to be done 
initially via the keyboard with the possibility later to 
be facilitated via the console shaft-encoder. 

For rotating the desired “bump” in the beam to 
any location in the PS ring, it was also foreseen to be 
able to do this via the console keyboard by typing the 
appropriate NSS and changing to any location as re- 
quired; future extensions to this would also enable 
it to be done via a console shaft-encoder or a tracker- 
ball. 
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The overall philosophy is perhaps best illustra- 
ted in Fig. 3 which clearly indicates in a simple man- 
ner the logical structure of the required facility, 
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Geometric and Power Considerations 

In the normalised phase space representation, 
one complete revolution (2 T) of the circle is equiva- 
lent to one complete betatron oscillation and if we con- 
sider the angular straight-section separation as “1 
between each of the 100 straight-sections, then one 
complete betatron oscillation is given by 100 (-) l/Q ra- 
dians, Hence we get (31 q 2 7~ Q/100, In general Q is 
given by Q=QR+Q where QR’6.25 for CERN PS. 
Therefore, 

(:I1 = ; (1 +$ ) (1) 

From Fig, 2, the straight-section separation 
for a perturbation at an even location n is 2 fill (i.e. 
n-5 to n-3) in the upper right-hand quadrant of the 
normalised phase-space while for the n-odd case, it 
is 401 (i. e. n-6 to n-2). This, for the ideal hQ=O case, 
leads to a displacement of x./4 for n even and 11/2 for 
n odd, as shown in Figs. 4 and 5 respectively. 
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To prevent large disparities in ower dissipa- 
tion in the 4 BLWs, it may be shown 5P that it is rea- 
sonable to make the currents in all 4 windings equal 
to each other at ideal Q, i. e. x=y=x’=y’ where x’ and 

yl are the ‘mirror’ images of x and y in the lower 
half of Figs. 4 and 5. These amplitudes may be rea- 
dily derived from the figures, However, for Q=Qs+ 
h Q, we have several possibilities for x and y deriva- 
tions over the small range of interest (6,106 Q< 6. 50). 
Starting with x = y for Qz6.2 5, we can have: (a) both 
x and y have new, unequal values for Q7c6.25; (b) 
either x or y is fixed at the ideal value but we vary the 
other for QZS. 2 5 and (c) both x and y have new equal 
values (see Appendix) for non-ideal Q. 

The Applied Strategy 

For a desired perturbation K at any location 
NSS, the amplitude of vectors required on the trans- 
verse phase-plane is given by the various equations 
of cases (a), (b) and (c) derived in ref. (5). It is clear 
that any one of these three possibilities (a), (b) and 
(c) above would be applicable to achieve K. However, 
there are certain disadvantages in using the techniques 
(a) and (b). 

For the case (a), the results show that starting 
with the equal values for Q=S, 25 case, the amplitude 
vectors would always be unequal for all other Q va- 
lues; their computation has to be done using trigono- 
metric functions which depend on 6 Q and the appro- 
priate constants stored for real time operation. 
Approximations may be made, but with the penalty of 
increased computations; similar arguments of com- 
plexity can also be put forward for the technique (b) 
for both odd and even cases because complicated for- 
mulae need to be evoked to yield the amplitude vec- 
tors which are unequal for all Qf6.25. 

An additional argument against the technique of 
case (a) is that 4 constants need to be evaluated and 
stored (xodd, yodd, xeven, yeven) for any one Q va- 
lue because the location NSS may be odd or even. If 
a database type of approach is to be used to store all 
the constants for any one Q then, this technique doub- 
les the amount of storage required as compared to 
case (c). However, some savings may be made by 
storing trigonometric functions and taking advantage of 
their recursive nature so that the same database could 
be used for both odd and even location “bumps”. But 
this in turn increases the computational work after re- 
trieval from the database. 

The real advantage of the strategy (c) is that the 
final solution yields the amplitude vectors which are 
all equal to each other at any one Q, i. e., we can per- 
turb the beam by applying equal currents in the 4 
appropriate BLWs. The Ampere values would of course 
differ for odd and even cases but in either case, the 
4 currents would be equal depending only on the Q va- 
lue, This means that in a database approach, if we li- 
mit our interest in Q variations of 6.10~ Qc 6.50, we 
need to store only 41 constants for the n-even case and 
41 constants for the n-odd, yielding a total of 82 con- 
stants only, The technique of case (b) would also re- 
quire only 82 constants but the vectors would always 
be unequal except in the Q=S, 2 5 case (hence a disadvan- 
tage by power and hardware considerations). 

In terms of the hardware reduction and simpli- 
fication, equal amplitude vectors imply equal-slope 
Function Generator ramps and flat top as well as 
equal currents in the 4 chosen power supplies to the 
BLWs. Hence one Function Generator is sufficient to 
drive all 4 power supplies instead of 4 individual Func- 
tion Gene raters. 
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Conversion of KREQ mm Into Amperes for I3LWs 

Fo~a the PS, 1 A in a magnet winding corre- 
sI~onds to a deflection of32.03 eq, mm at injection 
energy (B=147. 7 Gauss) , However, for each BLW, 
we have oni’ turn of the winding on a ma 

f 
net connected 

in series with a turn on the next magnet , hence the 
50 BI,W’s;. The net effect of 1 A at injection in one com- 
plete 13T,\1’ on the straight-section inbetween any two 
magnets is therefore the vector sum, i. e., 

p=2.03(2 cos( n/16)) (2) 
=3.981988 

Therefore, at injection energy corresponding 
to B=147. 7 Gauss, 1 Ampere in a BLW corresponds 
to 3. 981988 eq, millimetre radial perturbation, 

At higher energies, the same current produces 
a proportionally smaller perturbation and for a radial 
perturbation of R eq. mm, at an energy correspon- 
ding to B=Ba Gauss, we need: 

R . (Ba/Binj) / 3.981988 Amperes (3) 

In other words, (Ba/Binj) ’ (l/p) Amperes per 1 eq. 
mm. 

turb the PS beam radially and rotate it in the ring to 
any straight-section location desired. 

Presently, this is carried out via the Injection 
Console in the Main Control Room using IMLAC PDSl 
display computer linked to the IBM 1800. The facility 
has been included in the ISAAC Interpretive System6, 
enabling other essential facilities like the deformed 
closed orbit etc. to be displayed simultaneously on the 
console. 
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Formulation of equations 

The Appendix shows that in the n-even case, the 
desired perturbation K eq. mm is obtained by the 4 
equal amplitude vectors each of x=K/2 cos 611 eq. mm. 
How ever, a current Ih may already exist in one of the 
chosen 4 BLWs. Since we have an upper limit of 10 A 
in each BLW, this sets an upper limit on the maximum 
possible perturbation by the reduced amount of cur- 
rent (lo-Ih) applicable in each. Hence using eqn. (3), 

(1o-Ih) = Xnlax . (Ba/‘inj) / P (4) 

KMAXl = (10 -Ih) * p ’ 2 cos 0 1 * 
even 

Binj/B a (5) 

6 Fig. 

For a desired perturbation K (,(KMAX) at an even lo- 
cation, the current in each of the 4 chosen BLWs is 
then given by: 

Ix 

I  

= K ’ (BaiBinj) /  2 p COS 01 
(6) 

‘even 

The equations for an odd location perturbation are of 
the same form with cos (‘11 replaced by cos 2 (-11 as 
shown in the appendix. 

As a matter of interest, for Ba’Binj, Ih’O and 
the upper limit being 10 A in each of the chosen 4 
BLWs for a given straight-section location, we get 
KMAX of 73.57 and 56.31 eq. mm for the even and 
odd locations respectively, 

General Conclusions 

The above strategy has been adopted and the ne- 
cessary computational and design work carried out 
according to Fig. 3. Hence a fully operational facili- 
ty is available via the Program Request Unit to per- 

Appendix 

Using Fig, 6 for both 
even and odd cases for 
simplicity, we have the 
angle traversed A6B 
as 2 (-11 for n-even and 
4 “1 for n-odd and +I1 
is as in eqn. (1) for 
non-ideal Q. 

If all 4 vector amplitudes are constrained to be equal 
then, y=x and we get 

K = 2 x cos p (A, 1) 

x = K/2 sin (p/2) (A.2) 
therefore 

x=y= K/2 cosO1 (n-even) (A, 3) 

x=y= K/2 cos (2(-11 ) (n-odd) (A. 4) 

For a required perturbation K at a given even 
or odd straight-section location, eqns. (A. 3) and (A. 4) 
yield the general values of the vector amplitudes re- 
quired. In both the cases, we have constrained them 
to be equal (all 4 equal in each case) and this equality 
condition is dependent only on 0 1, This in turn depends 
on the Q of the machine and so at any specific occa- 
sion when a perturbation is desired, the Q measured 
beforehand yields all the necessary information to eva- 
luate eqns, (A. 3) and (A. 4). 
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