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JUMPING AN INTRINSIC DEPOLARIZATION RESONANCE IN SYNCHROTRONS 

A. Turrin(x) 

Iye have derived a generalized version of the 
Froissart-Stora formula, which allows one to calcu- 
lale the effec:t, on the polarization, of the finite Q- 
-jump magnitude, AQ, in crossing rapidly an intrin- 
sic depolarization resonance during acceleration, 

Introduction 

The possibility of accelerating polarized proton 
beams to high energies was demonstrated for the first 
time1 at the Argonne ZGS in 1973. To accomplishthis, 
the so-called intrinsic spin-resonances were rapidly 
passed through1 by changing at proper times, during 
the acceleration cycle, the vertical betatron wave nurn 
ber, Q, of the Machine. Undoubtely, the major effort- 
in the future will be focused on acceleration of polari- 
zed proton beams in the CERN/PS2 AGS3, FNAL bo- 
oster3 ‘4 and KEK Proton Synchrotron , Resides, acce- 
leration of polaI,ized electron beams came into begin 
recently’ at the Bonn Synchrotron. 

Since, in this context, it seems desirabletotreat 
the effect, on polarization, of the finite Q-jump magni 
tude, dQ, in crossing rapidly an intrinsic depolarizay 
tion resonance during acceleration, in the present pa- 
per we give the derivation of a generalized version of 
the well known Froissart-Stora formula’. This genera - 
lized formula is anticipated herebelow : 

S,(t-, +CO) = 2 [sinh(pn)/si~~li(r~~ 2 - 1 , (1) 

Here, 
p = (l/2) (AQ/2J2/Q’ , and (24 

r = [$ t ce~(AQ/2))2]1~2 . (2b) 

In eqs. (2a, b’l, Q’ = 6,’ o. is the rate of change (per ra 
dian around the accelerator) of Q at the resonance cros 
sing (‘5 d/dl,; o. denotes the particle’s angular velo-- 
city), A 

s 
is the range of the Q-jump, E = O/ O. (0 is 

the width of the resonance for a selected group of par 
titles having the same amplitude of vertical betatron - 
oscillations)., and the assumption Sx = 

= sYt 
6 

-)-co) 
q 0,s 

-4 -co) 

vali 
Z(t-+- co) 

q 1 is im b icit. Eq. (1) is 

for any magnitude of AQ, and allows one to cal- 
culate the resulting depolarization in cases where the 
Froissart and Stora model is inadequate, namelywhen 
Teng’s condition7 is vioiated. We recall that Teng’s 
condition dernands that Q remains constant during the 

whole range of time -( 0,6)-~/2, t < +( OI,($)-~/~ whe 
re the resonance is effective, so that there exist cases 
where the applied range AQ may be too small for Teng’s 
condition to be considered satisfied. 

We also recall that the effective residue polari- 
zation can 1)~’ calculated by averaging S 

z.(t-*t al) 
over 

the vertical betatron amplitude distribution. 

(4 
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Adiabatic following solutions before and after the 
passage of the resonance tail 

_ Fig, 1 shows the direction of the polarization vet 
tor S (for a selected group of particles having the same 
amplitude of vertical betatron oscillations) at different 

- r,AQ/2 

FIG. 1 - Vector diagram, in the (y, z) plane, show - 
ing the variations of S during the whole time inter 
val - 03< t < t a, in the case where a Q-jump is a; 
plied in the vicinity of an intrinsic spin-resonance. 
Sze text for the meanirg of the symbols, 

Is (t+-a)l q i-s-1 q I s,I = 1.1 %,,I q SZit ,-o)’ 

+ 

times during the acceleration stages and the Q-jump 
stage. In the rotating reference frame, one may expect 
the following sequence of events to happen during nor- 
mal acceleration, as the pulsed quadrupoles are sub- 
sequently turned on in the vicinity of the resonance, 
and eventually, i. e. , at td too, after the resonance is 
passed. 
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Sufficiently far from resonance, Z 
oriented along the main field direction, t 

+ _ co) is 
, When ap- 

proaching the resonance, the effective field oy+ Xr 
(i)>o), around which 2 precesses, starts turning 
slowly away from the vertical, and ‘s will follow this 
change in orientation adiabatically8. Thus, before the 
occuren_ce of the Q-jump pulse, the vertical component, 
S,, of S is given by8 

%Y 4 Yres) = 
I/ [1 + ( m/i)2-y2, (3) 

where - i= o,G(y - y res) is the detuning’ ( y = E/ (mc2) 
and G is the gyromagnetic anomaly). 

Suppose now that when i becomes equal to 
w,dQ/ 2, and,consequently, when 

sz(y< y,,,) q (% ’ 
(34 

with 
wz q Pi’ (4) 

(see Fig. I), the pulsed quadrupoles are switched on. 
Clearly ?- will start to precess around a rapidly va- 
rying effective field. Thus, after the resonance tail is 
passed through, the overall effect of thisgrocess is 
that it will lead to a polariz_ation vector S;t precessing 
around the effecti\Te field wj - $,,(dQ/2)k. Let be 
5 +av the time-average value of St. (S+av)7, will be ex - 
pressed later, on the basis of a suitable model. 

Eventually, i, e. over the remaining part of the 
acceleration cycle, Z+ av undergoes an adiabatic pro- 
cess of following the direction of the effectjve field, 
and slowly aligns <along the k direction as X + - 03. 
Thus, we may write 

S 
yt+ +Q)) = (Stavlz r/p . (5) 

Joining together of the adiabatic following solutions 

w, 
We now look for a relation between (S+av)z and 
in order to derive a convenient asymptotic form 

for Szjt++a)J i. e., eq. (1). 

As a simple model wllich exhibits sweeping of i 
through zero, let 

0 q constant and i q - 6tanh(at), (6% b) 

where a and 6 are assumed to be constant parameters. 
Clearly, 

I 4 + fco 
1 = 6 q w,dQ,‘2 , 

(74 

and 

I I Y(O) = nd= u,h. (7b) 

Once the model above is adopted, the object is to 
solve the conventional coupled equations of motion6 

2ii. = ogexp(iX) , 2ii = Ufexp(-iX) @a, b) 

(which can be derived by considering the Schradinger 
equation for a spin l/2 particle interacting with an ex- 
ternal field) written, as done above, in the rotating 
perturbing field approximation. (gg* t ff* q 1 is our 
normalization condition), 

Thus, in the following, the time-average value 
of the transition probability, 

k8)+av - (1/2)[1 - iS+av)J , (9) 

in the long-time limit will be calculated for a particle 
initially in the state given by eq. (4), by inserting eqs. 
(6) in eqs. (8) and solving these equations, 

The first step consists of decoupling the spin-mo 
tion equations, We have, e. g., for g, 

y - idtanh(at) 2 + (w/2)2 g q 0 , (10) 

Eq. (I 0) is easily transformed into the equation 

x2(1-x)g”+x[(l+ip)+(-l+ip)d g’+(q/2i2(l-x)g=O (11) 

by the transformation 

x q -exp(2crt) , (’ :d/dx; ” f d2/dx2) , (12) 

The dimensionless constants p and q are given by 

p = ~/Gw and q = @/w) . (13a, l-2 

On introduction of the new function y by the sub- 
stitutiong 

g = xly * (13) 

eq. (11) becomes 9 

x(1 -x)y” t [c-(a-tbtl)x] y’ - aby = 0 , (15) 

The constants 11, c, a and b are 

21,= -ipfir ; c+=l+ir ; 2 2112 r=(p tq ) (1% b, 4 

a+ 1 -iptir ; b, = - ip ; (l&l, e) 

a = _ ip ; b- = -ip - ir . c 16 f, g) 

Eq. (I 5) islre well known hypergeometric diffe- 
rential equation . Thus, in the vicinity of x = - 0 (i. e. 
at t 3 - 03) the solution of eq. (11) which satisfies the 
boundary condition (4) can be writtenI as follows : 

g q D(-x) 
-ip/2 -ir/2 

F( -ip-ir, -ip; 1 -ir; x) . (17) 

Here, D is the proper integration constant, namely, 

DDf= a$+ _ o3 5 (ggy 2 (l/+ -is-!J q 

(181 
q (1 - p/r)/2 

and F( -ip-ir, -ip ; 1 -ir ; x) is a hypergeometric func- 
tion (F(a, b; c; x) z F(b, a; c; x) ; F(a, b; c; 0) = 1). 

Note that solution (17) is consistent with the cou- 
pled nature of the original eqs. (8). This can be easily 
verified by considering separately both eqs. (8) at x=-O 
(use the differentiation formula l2 for the F functions 
and remember that fff+ o. q (l+p/r)/2). 

The asymptotic form for g as t+ f co (i. e. x-+ 
-P - a~) can be found by making use of the appropriate 
linear transformation formula’ 3 for the F( -ip-ir, -ip; 
1 -ir; x * - oo) function appearing in eq. 

b 
17). Replacing 

in the resulting linearly-transformed1 form of g t-,-m 
the F(a, b; c; l/x) functions by unity and performing a 
fair amount of r-algebra, one finds 

gtqtoo= D(-x)‘P’2-1r’2~-(-x)irsinh(pn)!sinl~(r~~,(19) 
3213 
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2 = rr2(-ir) (r-p)r(-ip-ir)r(ip-ir) C I 
-1 

, (19’) 

Here, the r’s are gamma functions, 

Finally, we develop the squared modulus 

g&+, and use eq. (18). We get for the time-avera- 
ge value of the transition probability, (g$)+avp 

w)+av t 1 - (s+av)z = 

= (ltp/r)s-s++(l-p/r) sinh(pjt)/sinh(rd , c 1 
2 (20) 

1, 
2. 

T. Khoe at al., Part, Act. 6, 213 (1975), 
M,Bell et al,, High-Energy-Physics with Polari- 
zed Beams and Targets, Argonne, 1976. M. L. 
Marshak, Editor. AIP Conf. Proc. No. 35 (1976), 
p. 405. 

3. 

where 
St = sinh[(r fp)n]/sinh(rn) . (20’) 

In writing eq. (20) we have dropped an (expected) 
rapidly oscillating term which enters (its time-avera- 
ge value is zero) since we are interested only in the 
mean value of the residue polarization, 

E. D. Courant, Workshop on Possibilities for High- 
er Energy Polarized Proton Beams, Ann Arbor, 
1977, A. D. Krisch and A. J. Salthouse, Editors. 
AIP Conf. Proc. No. 42 (1978), p. 94. See also 
E. D. Courant and L. G. Ratner, ibidem, p. 41. 
E. D. Courant, 3-rd Intern, Symposium on High- 
Energy Physics with Polarized Beams and Polari- 
zed Targets, Argonne, 1978, Proceedings to be 
published in AIP Conf. Proc. See also L.C. Teng, 
ibidem. 

By some algebraic manipulation, eq. (20) may be 
written as14 

4, 
5. 
6. 

7. 

(S+av)Z = (p/r)[2sinh2(pn)/sinh2(rn) - g , (21) 

Thus it follows from eq. (5) that S 
Z(t++co) 

is expres- 
sed by eq. (11. 

8. 

S. Suwa, 3-rd Polarization Symposium (Ref. 3). 
W. Brefeld et al., 3-rd Polarization Symp. (Ref. 3). 
M. Froissart and R. Stora, Nuclear Instr. and 
Meth. 7, 297 (1960). 
L.C. T&g, Proc. of the Summer Studies on High- 
Energy Physics with Polarized Beams, Argonne, 
1974. J, Roberts, Editor. ANL/HEP 75-02,(1975), 
p, X111-1, eq. (22). 
A, Turrin, Proc. 10th Intern. Conf. on High-Ener 
gy Accelerators, Protvino (nil0sc0w), 1977, vol. 2, 

p. 81. 
Finally, we note that eq. (1) reduces to the Frois 

sart and Stora formula’ in the case where Teng’s con: 
dition?, i. e. 

p >> 2 (22) 

is satisfied. 

9, 

10. 

11. 
12. 
13. 
14. 

G. M. Murphy, Ordinary Differential Equations and 
Their Solutions (Van Nostrand, 1960), eq. 518, 
p. 370. 
Handbook of Mathematical Functions, M, Abramo- 
witz and I. A. Stegun, Editors (National Bur. Stand. 
Appl. Math. Series 55, U. S. G. P. 0. ,Washington, 
1965), Chap, 15. 
NBS Handbook (Ref. lo), eq. 15.5. 3. of Chap. 15. 
NBS Handbook (Ref. lo), eq. 15.2. 1. of Chap. 15. 
NBS Handbook (Ref. lo), eq. 15. 3. 7. of Chap. 15. 
The author is grateful to R. D. Ruth (BNL) for point - 
ing this out, 

3214 


