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STABILITY OF INTENSE TRANSPORTED BEAMS* 

L. J. Laslett and Lloyd Smith** 

Summary 

At themprevious National Accelerator Conference, 
the transport of intense ion beams, with particular 
reference to Heavy Ion Fusion, was analyzed by finding 
matched solutions of the coupled envelope equations.1) 
This work established relations between lattice struc- 
ture, beam dimensions and space-charge tune depression 
as a function of intensity. In this paper we report on 
an investigation of the stability of the K-V distribu- 
tion in transport by a periodic quadrupole system, a 
generalization f Gluckstern's analysis for a contin- 
uous solenolld. 23 The results are presented and com- 
pared with simulation computations for a particular 
case; the results provide a prediction of maximum 
transportable current without degradation of emittance 
due to instability. 

Method3) -_- 

The K-\,' distribution is unique in that it permits 
specification of a stationary state in the presence of 
variable linear external forces plus space charge 
forces. Since the motion of individual ions is govern- 
ed by linear forces, a perturbed solution of Vlasov's 
equation can be usefully written as an integral of the 
perturbing forces along the unperturbed trajectories. 
The forces, in turn, are determined by Poisson's equa- 
tion in the two transverse dimensions; integration of 
the perturbed distribution function over the transverse 
momentum variables then leads to an inteqro-differen- 
tial equation for the perturbed potential of the form: 
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ere N = number of particles 

per unit length of beam 

ATE = emittance (assumed equal in both planes) 

a,b = half width of the beam in x and y, 
respectively. 

13 and a,h are periodic functions of s, determined as 

it':eference (1). 
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In spite of the formidable appearance of eq'n (1), 
a brief inspection shows that the solutions for 
V(x,y,s) are mixed finite polynominals in x and y with 
coefficients that are functions of s. Eq'n (1) then 
reduces to a set of linear differential equations in- 
volving the coefficients, Finally, a numerical inte- 
gration of these equations through one period using 
the appropriate a(s) and b(s) leads to a matrix, the 
eigen-values of which determine whether the motion is 
stable or unstable in the presence of that form of 
perturbation. 

Results 

We use a terminology in which an nth order per- 
turbation is one in which n is the highest power ap- 
pearing in the perturbed potential; it is further 
called even or odd according to whether even or odd 
powers of y occur. Thus, for example, V = Ax4 + 
Bx2y2 + Cy4 is "fourth order even" and V = Ax2y + By3 
is "third order odd". In practice, the number of 
equations for the coefficients increases so rapidly 
with order that we have not gone beyond sixth order. 
A finer grained structure to the perturbation is in 
fact not very interesting in view of the doubtful re- 
lation of the K-V distribution to a real beam. 

The general character of the results is that in- 
stability occurs for all modes in finite ranges of 
intensity such that the frequencies of the modes pass 
through a rational relation to the Fourier components 
of the B-functions, In addition, for the even order 
modes a threshold is reached above which the motion is 
unstable for all higher intensities. For reasons not 
fully understood, these thresholds occur at precisely 
the same tune depression as for the continuous solenoid 
and the growth rates as functions of further tune de- 
pressions are precisely the same. Fig's 1 and 2 show 
the unstable regions for fourth and sixth order even 
perturbations for a FODO lattice with various zero- 
intensity phase advances per period. 

The second order even perturbation (V = Ax2+ By2) 
corresponds to integrating the envelope equations with 
a slight initial mis-match. This mode is unstable at 
an intensity which depresses the phase advance per cell 
to 90" if the zero intensity phase advance per cell is 
greater than 90". On the basis of this result we feel 
that a transport channel for high intensity beams 
should be designed for less than 90" at zero intensity. 

Comparison with Simulation Computations- 

In parallel with the analytic work, extensive 
simulat'on computations have been carried out by 
Haber.4 1 We find qualitative agreement for the onset 
of the extended region of instabiltiy but, since many 
modes are unstable in this region, a quantitative com- 
parison is not possible. However, in a different para- 
meter range, Haber found an instability which we were 
able to identify as an isolated third order structure 
resonance. From the perturbed distribution function 
for the mode, expressions for the growth of various 
moments of the distribution and the distortion of the 
phase space boundaries were derived and compared, per- 
iod by period, with the simulation results. Surpris- 
ingly good agreement was found for the growth rate, the 
relative magnitudes of the moments and the boundary dis- 
tortions, the only empirical parameters being the effec- 
tive initial amplitudes of the odd and even modes. 
Figure 3 illustrates the development of this instability 
as the intensity is increased, the larger of the two 
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180-deg. modes being identifiable with the instability 
observed by Haber (with o g 46 deg.) Figure 4 shows 
a typical comparison of moments and Figure 5 the dis- 
tortion of the emittance ellipse. This comparison 
provides a check on both the theory and the simulation 
work, and lends credence to the simulation of dis- 
tributions which are not accessible to theory. 
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Fig. 1. Regions of fourth-order even instability 

lines) for a symmetric FODO quadrupole lattice 
with a magnet occupancy factor ri = l/2. 
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Fig. 2. 
for r~ = l/2. 

Regions of sixth-order even instability 

Conclusions -____ 

Because of the singular nature of the K-V dis- 
tribution, it is somewhat more susceptible to instabil- 
ity than a more realistic distribution. Therefore, 
avoidance of these instabilities should provide a con- 
servative criterion for design of a transport channel. 
In this spirit, the zero-intensity phase advance should 
be less than 60" in order to avoid the envelope and 
third order instabilities and then one should limit the 
current to a tune depression of a factor of 2.5 
(e.g., 60" to 24"), at which intensity the extended un- 
stable range begins to appear. 
eq'n (3) of 

In the notation of 

5 
eference 

merit, Q'/um 13, 
(l), the corresponding figure of 

is then only a function of the frac- 

tion of the channel occupied by quadrupoles, as shown 
in Table I. 
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Fig. 3. Instability regions for the third-order 
mode. The curves represent the growth per period cal- 
culated for n = l/10, but are very insensitive to n 
when plotted vs. u. - 
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Fig. 4. Illustration of exponential growth of 
/ < y py2 > ] found in simulation computations and 

attributed to the third-order mode instability, 
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Table I. 

Figures of Merit for uo = 60 Deg.& CT= 24 Deg. 

rl* II Q’ q Q/($) [FM] = Q'/u;'~ 

1 1.6581 0.764 

213 1.5392 0.688 

l/2 1.3959 0.601 

l/3 1.1851 0,481 
--~ 

l/4 1.0445 0.405 

l/5 0.9436 0.354 II 

116 0.8669 0.315 

118 0.7567 0.263 
-A II I .- - 

-1.50 -0.90 -0.30 0.30 0.90 l.Su l/10 0.6799 0.228 

Y/(initial maximum value) - *n denotes the magnet occupancy factor. 

Period 18, sigma = 45.85 degrees 

Fig. 5. Boundary of computed distribution in a 
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