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Introduction 

Recently it has been shown that very large 
currents can be accumulated in medium energy proton 
storage rings by multiturn injection of an H- beam 
through a charge stripping medium.l Since the parti- 
cles are injected continuously into the same phase 
space, it is possible to increase the circulating beam 
brightness with respect to that of the incoming beam by 
a large factor. The stored protons pass repeatedly 
through the stripper, however, so that this phase space 
is gradually enlarged by scattering. In this paper we 
consider how the circulating beam phase space (emit- 
tance) growth rate depends on the nature of the scat- 
tering process and on where it occurs in the storage 
ring matrix. Since the motivation for this work arose 
in connection with the design of the proposed high- 
current storage ring at LAMPF, the results are focused 
on the specific parameters of that device. The forma- 
lism is developed with some generality, however,subject 
only to the followinq restrictions. The stripper 
thickness (thin foil‘j is assumed negligible in compari- 
son with the mean betatron wavelength of the machine. 
Residual gas scattering is neglected (i.e. high vacuum 
in the ring). All inelastic and nuclear elastic scat- 
tering is assumed negligible in comparison with Coulomb 
elastic scattering for the small angles considered 
here. Finally, we restrict ourselves to the case in 
which the circulating protons undergo no more than one 
Coulomb scattering per stripper traversal. 

Derivation of Scattering Distributions in 
Phase and Betatron Space 

We consider a hypothetical storage ring with a 
stripper foil at some location s=O (= C = 2C = 3C, etc. 
where C is the ring circumference). We follow the 
betatron motion of a large number of particles injected 
into the ring with displacement yo from the equilibrium 

orbit and with inclination yo. By y we mean either 

radial or vertical displacement. We employ a graphical 
phase plane analysis analogous to that of Bruck2 to 
deduce the distribution of betatron amplitudes after 
the particles have passed through the foil a large 
number of times, N. 

The general form of motion of a non-equilibrium 
particle is 

y = ;(e/?oi”2 cos(.j-S), (1) 
where y, 3, ;, are all functions of location 5. G is 
the oetatron function of the ring, and ;,=,'ds/B; B is 

the value of i? at the foil location, s-0. The co:- 
stants y (betatron amplitude) and (5 are determined from 
the initial values y. and yb. The slope of the tra- 
jectory is obtained oy differentiating Eq. (11, using 
the relation 13' = l/3; 
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(04 0 )l'* y'=-GCsin(+-6) - (8'/2) cos(o-S)] . (2) 
Solving Eqs. (1) and (2) for the sine and cosine: 

COS($-6) = Y/!;(B/a,)“2) (3) 

sin(b-6) = (sub-(G’/~)Y) /(i(f3/13,)~‘~) (4) 

Squaring and adding Eqs. (3) and (4), we obtain the 
Courant-Snyder invariant: 

2 
y + [GY’-(G’/2)YJ2 = zl= A 

G en 
” 

It can be readily shown that the (y,y') phase space 
area occupied by all particles whose betatron ampli- 
tudes are less than or equal to y is TTA, a fact which 
we shall use later. 

Equations (3) and (4) can be depicted graphically 
on a phasor diagram (such as used in electrical Circuit 
theory) as follows: envision a vector, attached at 
the origin of a two-dimensional space, with amplitude 

~WGoP2, and making a negative angle (1$-E) with the 
horizontal axis. Then the horizontal projection of 
the vector is y, while the vertical projection is 
By’-(B’/2) y E y*. 

Since we are considering oniy scattering at a 
fixed s location (the foil), the phasor representing 

unperturbed motion has constant amplitude y=[yz + 

(ZoYA - i?;/2)Yo)~p2, and advances clockwise, as the 

Proton makes each circuit of the ring, in angular steps 

of & = /c o ds/B = ZTJ radians, where ‘J (the tune of the 

motion) is the number of betatron oscillations in one 
revolution. A+c?llision with a foil atom produces a 
small change Ey ln the vector representing betatron 
motion. This incremental vector has only a vertical 
component, &y* = B,6y', since the trajectory slope is 

changed but not the trajectory location. If the tune, 
-J,is not numerically the ratio of small integers (i.e. 
not at a resonance) then the mean value of l/2 for the 
square of the cosine or the sine of the betatron phase 
at collision can be employed exactly as in Bruck's 
Eq. (14.36), and the incremental vectors can be added 
to the unperturbed vectors exactly as in his analysis, 
to give the probability distribution function for 
observing a particle with initial parameters yo,y' to 
have parameters y,y* after N turns. This functioi is, 

CI > ^^ 
where & N = + rds :,L(ay~)L, 

p$Y>Y*l = exp(-(~-~n,)2/2rN2j~z-~N , (6) 
(cf. Bruck's Eqs. (14.35)-and (14.36) with 5 = 3,). 

N, is the number of scatterings in F1 circuits of-the 
ring, which in terms of foil thickness t, atom density 
n, and Coulomb scattering cross section c> 

.i 
c is Ns=Nntj;. 

The vector y is the vector (in the y,y* plane) repre- 
senting a particular betatron motion, while q or is the 

vector with components l~,,i~y'~ - 

clockwise through an angle N2.r\-,. 

(~',/2:ycj, rotated 

Transformed into the conventional y,y' phase plane, 
the probability distribution becomes 
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PN(Y,Y') = (so:2-5;) expl-[(:y)2 

t~~o~Y~-ji~i2)sY)2]/2u~~~ (7) 

where 6y = y - yo, and 6y' = y'- y'o, with Y,, and 

Y'or 
being the mapping of the point (y,r,y*,,) onto 

the y.y' plane. 
This last result can be interpreted as follows: 

If many particles are injected into the ring with es- 
sentially the same initial conditions, then after N 
turns the particles will be distributed in phase space 
about the y,y' coordinates of an unperturbed orbit 
such that the contours of equal probability are ellip- 
ses similar to the betatron motion ellipse at s = 0. 
In particular, if the initial conditions are y. = 0 = 

yo, then the contours of equal probability in phase 

space are given by 

y2 t (Boy~-(6p)yj2 = constant. 

Further, integrating Eq: (7) over all y' yields the 
result that the beam is distributed in space in a 
Gaussian (ronnal) profile centered on the unperturbed 
orbit location. 

If the injected beam has a normalized distribu- 
tion function in y,y* space given by 

fo(y,y*) = exp - y2ty*"/2T2 
ic 

/ o)/24 (8) 

which we take as defining a "matched" beam, then after 
N turns the distribution will be given by 

cm m 
- -* f&Y,Y*) =i ,/fo(YvY*)PN(Y-?I,Y*-;;*)dYdY > (9) 

-n -m 
which is readily evaluated to be 

Thus the foil scattering width z,~ adds quadratically to 

the injected beam width go. 

The betatron amplitude distribution function can 
be obtained from this last result as (cf. Ref. 2, Eq. 
(14.42)): 

p(j)dj=y exp[-y2/2(df+di)) /[df+'~G) dj , (111 

which is a Pdyleidh distribution. This distribution - 
yields a mean square betatron amplit~dc 72 = 

,n "\ 2 ;to; . e ) 
Emittance Growth for Sumned Distributions 

If we inject continuously for N turns, particles 
iniected in the first turn will have undergone X foil 
traversals, those injected in the 2nd turn N-l traver- 
sals. and so on. The betatron amplitude distribution 
(nokalized) representing the scattering history of 
all particles accumulated in the ring is then the sum: 

N 

(12) 

i=l 

where :j 
2 = 1/2~1.~nt~:c(~. Y')~ is the incremental in- 

crease in the squared scattering width added per foil 

traversal. While this distribution cannot be evaluated 
explicitly in general, its mean square value is defined 
and is just: 

F= 
I: 2 ";+1/2(N+1)6c 

[ 
(13) 

the approximation being valid for large N. ,-. 'I 
If i5ff ' is small in comparison with (3: , and N is 

not too large, it can be shown numerically that the sum 
P:,(y) is reasonably well approximated by the Rayleigh 

distribution: 
. ^ 

P(Y) = Y exp -y2/2 oi+1:2c2, 
i i :,) ( 

" I 
2 

";+1/z-N 
j (14) 

/ 
Using the relation between the Courant-Snyder in- 

variant and the stored beam emittance, it is seen that 
the (y,y') phase space occupied by particles with beta- 
tron amplitudes less than or equal to the RMS value 
T-T 7 I-7 

(15) EN = nY2/Ko = (2dBoH3~+l/2c$ 

= E 
0 

+ rN&~~ip.~ = co+l/2~~oNnt~c(~ 

where co is the initial emittance of the injected H- 

(y')"' is:- 

beam. Thus we observe that the emittance of the 
stored beam is proportional to the value of the beta- 
tron function at the stripper location, the area1 den- 
sity of the target, the Coulomb scattering cross sec- 
tion of the target atoms, and the mean square scatter- 
ing angle produced in the collisional process, and that 
it grows linearly with the number of injected turns. 
In Fig. 1 we have plotted the scattering width oN 

versus the product Nnt, with e, as a parameter. 

z 
b= 

Nnt (Atoms/m’) 

Figure 1 

Scattering Width ,;N Versus Nnt, with co as a Parameter. 

Ep = BOO Me\/. Stripper Material - Carbon. 

The energy of the incident protons was taken as BOO 
MeV, the strippermaterial as carbon (A,Z = 12,6), and 

the product 'ic 
2 

(#:y')' = 3.B4 x lO-33 (m-rad) /atom was 

obtained from Bruck (Eq. (14.10)), corrected for rela- 

tivistic effects and center-of-mass notion. 
The stored beam cmittance growth (Eq. (15)), under 

conditions pertinent to the LAMPF storage ring propo- 
sal, is plotted in Fig. 2 as a function of number of 
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Stored beam emittanco qrowth , 

Injected Turns (x l000) 

Figure 2 

Stored Beam Emittance Growth Versus Number of Injected 
Turns, with B, as a parameter. Ep = 800 MeV. 

Stripper = 150 bg/cm' carbon foil. 

injected turns, with 
60 

as a parameter, The emittance 

ho, for the injected H- beam is taken as (T/IO) x 10v5 

m-rad. Using the recently measured 800 MeV carbon 

stripping cross sections (o-lo and c~,)~, and choosinrJ 

95% H- + H+ conversion to be an acceptable efficiency, 

we arrive at nt = 7.5 x 10 22 
atoms/m2. ~~(6~0~ has 

the same value as for Fig. 1. It is apparent from the 
figure that (depending on the choice of 30) we should 

be able to inject from 10,000 to 20,000 turns without 
increasing the stored beam emittance to an unaccepta- 
bly large value. 

Brightness Ratio 

It 1s interesting to examine the dependence of 
the stored beam brightness on the number of turns in- 
jected into the ring. If brightness is defined to be 
proportional to beam current and inversely proportion- 
al to the product of the emittances in y,y' and x,x' 
phase space, (Btzi/ExEy), then the ratio between the 

brightness of the stored beam and that of the injected 
beam, after N turns of continuous injection is: 

50- 
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Figure 3 

Ratio of Stored to Injected Beam Brightness Versus 
Number of Injected Turns, for B. = 5 m, 

and co = (~/lo) cm-mrad 

RB = EN/B0 = (Ni/x E 
Nx Ny )/(i/c E ox oy ) 

= W [(l+l/ZN&o 
If we assume equal 6, and e. in the x,x' and y,y' 

planes, then this simplifies to 

RB = N/(1+1/2N~z~/ni)~ 

This function is plotted in Fig. 3 for ii, = 5 m, and 

all other conditions as specified in Fig. 2. It can 
be seen that the beam brightness ratio rises rapidly 
to a maximum of nearly 350 at N = 1500 turns, and then 
drops off rather slowly. Even at rl = 20,000, the cir- 
culating beam is more than 80 times brighter than the 
injected beam. 
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