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Summary and Introduction in the cycle if the RF voltage is deliberately lowered 

At intensities > 1.5 x 101* protons per ring, and at 
to combat longitudinal instabilities5 (fitting bucket 

reduced RF voltage, fast growing beam loading instabili- 
size to bunch size). The first is cured by lowering the 

ties occur in the Booster (PSB) with loss of beam bunch- 
tube impedance4. The second is not easily cured in this 

ing. The observed thresholds are reported; they are 
way because the cavity impedance is lower later in the 

different from those given by Robinson’s’ criterion and 
cycle, and a bigger threshold increa;e4is required. It 

occur with a different frequency. To explain this and 
would imply the use of a second tube ’ 
ming of the tube supply voltage6. 

and a program- 

other observations, a model of the beam loading inter- 
action including the feedback loops controlling RF The Linearized Dynamic Model 

amplitude, phase and cavity tuning, is presented. In the 
general case, beam loading causes cross-coupling between 

Due to the good damping of higher order cavity 
6 

all three loops, which for high beam loading makes the 
modes , the relative low harmonic contents of generator 

system unstable. 
and beam currents (long bunches), only the fundamentals 

For low beam loading, 
of the generator and beam currents are important to de- 

which was assumed for the termine v (Fig. 2). 
basic systems design, the loops are practically indepen- 
dent. The Robinson criterion is a limiting case of this 
model (no feedback loops). A method for designing better 4 

loops taking into account the cross-coupling is 
described. It has the advantage over other cures, such 5 ‘5 1-i 

i +* oL v 

as lowering of the cavity Q or feeding the cavity with To 

a current equal to the beam current but of opposite 
t 

L R c F 

phase, that it does not require extra RF power. 

I 

F rT 

2 

The RF Feedback Loops in the PSB 2.3 eQ3 

d r, total RF 
A simplified block diagram of the RF and beam con- 

m fl+ 
curran 

trol system is shown in Fig. 1. There are 3 important 
loops. The tuning loop keeps the tube current (grid vol- 
tage) in phase with the gap voltage by acting on the DC 
bias of the ferrite rings. This automatically ensures 

Fig. 2 : Steady state conditions. 

For short bunches the amplitude of the fundamental 

minimum tube current for varying frequency and beam 
IB is twice the DC beam current, for the relative long 

loading. The AVC loop makes the gap voltage follow a 
PSB bunches (C lgO” RF) this Fourier coefficient drops 

prescribed voltage program by acting on the amplitude 
to about 1.6. The output impedance of the tube has been 

of the RF tube current. The phase loop controls the 
included in the resonant circuit equivalent so the gene- 

phase difference between gap phase and phase of the fun- 
rator can be considered as a current generator. $B is 

damental of the bunch signal by acting on the frequency 
the stable phase angle (6, > 0 = accel.), $r is the 

or the phase of the RF tube current. The phase loop 
phase angle of the cavity + tube impedance and bL is 

only corrects AC-variations of the beam-cavity phase; 
what we will call the loading phase angle. It is equal 

the absolute value (stable phase angle) is controlled 
to the impedance phase angle for no beam load. I, is the 

by radial and synchronization loops. These last wo 
generator current required to give the same gap voltage 

loops have little effect on the dynamics, and will not 
without beam load and with the cavity tuned to resonance, 

be discussed here. They are easily added later as a 
The beam loading can then be characterized by a dimen- 

correction to the phase loop. 
sionless parameter Y = IB/I,, which we will call the 
relative beam loading. 

Beam loading instabilities occur (i) during adiaba- 
tic trapping when the RF voltage is low, and (ii) later 

For a given TB(IB and I$B) and es, the required IG 
and mL is determined by the steady state conditions: 

Ferrite loaded tans -Iotan$Jz-&os&B = b+Z-kwB 
l.- lo+16sin tie l+Ysin$B (1) 

((.= Io+‘,swl = I,(l+Ysin+,) 
COmP, cos 4L 

(2) 

Fig. 1 : PS5 RF feedback loops. 

point 
To determine whether a given steady state “working 
” is stable or not, one has to know the transmis- 

sicns from small modulations of TG, ‘TB (phase and ampli- 
tude) and cavity tune to v. The transmissions back from 
modulations of V through the beam to TB and through the 
“external” control electroniss to IG and cavity tune 
complete the loops (Fig. 3). For the beam we have as- 

sumed rigid bunches, so we get the transfer function: 

B(s) = p&)/p”v(s) = w:/(s’+ w.‘) (3) 

and no amplitude component of TB, The transfer functions 
for transmissions of phase and amplitude modulations 
through the cavity are derived in Appendix A. C,(s), 
C,(s) and C,(s) are the transfer functions through the 
control electronics. The signals on the block diagram 
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represent small-signal deviations from their static 
equilibrium values. The p’s are phase deviations in ra- 

dians, the a’s relative amplitude deviations (e.g. 

aG = 21~/1~) and x is the tuning deviation relative to 
cavity damping rate, x = A+/?. 

ap volt&w phasm 

=zzrzPkU loop 
Zttuning -1 

-AVC $9 

Fig. 3 : Small signal model showing transmissions 
between generator current, gap voltage, 
beam current and tuning control. 

The system is unstable if the characteristic equa- 
tion (31) has roots with a pcsitive real part. For 1st 
order operators in the contrcli part of the loops (pure 
integration for C,(s)), the equation will be of the 6th 
order. Although a general analytic stability analysis 
in principle is possible, it must be excluded due to 
the complexity of the coefficients. One can however get 
a good undersranding of the dy-namics of the system by 
considering a few limiting cases. 

Although amplitude modulation of IB has been ne- 
glected it may easily be included in the -nodel, and the 
interaction between the RF system and longitudinal qua- 
drupole type (breathing mode) oscillations9 can be 
studied. 

Limiting Case for No Loops 

If all the loops are opened, one gets easily from 
the block diagram cr (Bl) t:le ctaracteris:ic eqcation: 

1 - BMG~p(s) + tanOs G:,,(s)) = 0 

s4+20s3+(w:+02(l+tan2+,))s2+20w:s 

+u2w:(l+tan2$~ -Y tan~,/cowB)= 0 

(4) 

(5) 

The Routh-Hurwitz criterion gives tllc wcsl:-known 

Pi,,. #j : X0 tcop :>t.lbility for ;‘B = 0. 

Robins on1 stability condition: 

0-c sin2& < 2cosb~/Y 6) 

which for $B = 0 is plotted in Fig. 4. For $z < 0 one 
gets an instability with the synchrotron frequency, 
whilst for high Y and ez > 0 one gets a “zero frequency” 
instability with a non-oscillatory pure exponential 
growth. 

As yen, no experiments h.ive been performed an :he 
Booster under these conditions Where-Robinson’s criter- 
ion is valid. 

Limiting Case for Tuning Loop Only 

We sinplify the problem by assuming ,$B = 0, and the 
characteristic equatior. becAmcs: 

1 - B(s)G;,(d + CT(s)G,,(s) = 0 (7) 

h simplified loop filter CT(s) = &UT/S, where -,r is the 
bandwidth of the tuning loo?, Is a gaod approxfmntion 
in a wide frequency range. Equation 7 iecomes: 

~~+2d+(u~(l+tan~~,)t~~tw~~)s3t(2aw,2to~~~)s~ 

t,(w~u2~1+tanz~~-Ytan~~)+w,aw?)stw~w~u2=0 (8) 

which has stable roots if: 

y< t211ttan2~,)+w,/u)(2-uw,/w,2) 
4taWz 

(9) 

For GwT/Ws2 CC 2 and w’f!7 cc: 2, (9) approaches (6), 
but for typical PSB parameters where *UT 2. 3~1~’ to?, 150,~ 
the ($sz,Y) diagram (Fig. 5) becomes inverted with res- 
pect to ,$z. 

Instabilities have been observed in the PSB in the 

@z > 0 area with Y as low as 0.15-0.20. Reduced tuning 
gain gives faster growth rates. 

Fig. 5 : StRbili.ty with tuning loop, ,$B = 0. 

Limiting Case for Tuning + AVC Loops Onlv 

As an analytical treatment is complicated, we will 
now use n siiripler nplrcnch. In a11 c;~!;?s without the 
strong feedback f rum the phase loop, ;md with a not too 
high beam current the system shculd oscillate with a 
freqlzncy n.e:ir tO the ~yn&rntr3n freq~~encg;, 5 = 1 .i+ !s, 
xd it is easy to find this shift. In Fiz. h the tot.11 
fec~dbsck irom pB to p $ is collfctcd i.n H(s). t’ron t!le 
characteristic equation 

1 -B(s)H(s)=O 

we get 

(IO) 

AS = -jw, H(jw,)/2 (11) 

proviied 1 ‘.c j is ‘;m;ill c,,mp.ircd to ?~s or the cliitxlcc! 
to my pole or zerc, in li(sj. A po$i.tive re,ll p.lrt zf .‘s 

corresponds to instability. 
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For $R = 0 we get for tuning + AVC loops: 

H(s) = G~p+C.(G~.G~p.G?pGlj,) 

‘+C.GO,+CTG,,+C,CT(G~,G,,-G4,G,,) 
(12) 

which for our case, ;Ca(jws)] >> 1, o >> us can be 
roughly approximated by 

Y tan& 
H(juo’~I+ta”ZbL+Ytan+L*C,(jw,) 

As CT(jtis) has a negative imaginary component, we get 
stability for $2. < 0 and instability for (IL > 0 (Fig. 7). 
This agrees with observations. Also observed growth 
rates agree with (11) provided they are big enough for 
Landau damping to be neglected. Calculations show that 
growth rates should be higher for tuning alone than 
for tuning + AVC, which again agrees with observations. 

P(I 
B(S) 

P& 

* 

m 
WI 

Fig. 6 7 Fig. 

The Case with AVC, Tuning and Phase Loops 

This is the normal operating condition. As the 
phase loop produces large shifts of the synchrotron 
eigenvalues, the previous method cannot be used. The 
observations done on the 800 MeV flat top (OR = 0) with 
reduced voltage (3.5 kV) showed sharp thresholds and 
some dependence on $I, (Fig. 8). The observed frequency 
of instability was 1, 7 kHz, while the synchrotron fre- 
quency under these conditions is x 1 kHz. This indicates 
that the transmission through the beam is unimportant, 
so we let B(s) = 0. If we furthermore let $R = 0, assume 
u big, C,(s) = oa/s, C,(s) = f~p/s, and CT(s) = djT/s, 
where tia, ‘p and u’T are the bandwidths of the loops 
withcut beam loading, (Blj is reduced to: 

(i+(Y+tan9L)2)s3+(w,+wp+~WT+(We+~p)(Y+tan~L)tan~l)s2 

+(w.wp+w.wTtWTWp+W~Wptan2~L)S+W,wpwT=0 (14) 

For $L = 0 we get the simple stability criterion: 

Y< 2+-t “w: z+ 9 ;; -+-t-t 
WT $3 (151 

.Jhich for ua = up = 5wT gives Y < 3.8. From the more 

l lO 1% +---i&p +20 

Fig. 8 Pig. 9 

complicated expression including oL one can plot the 

thresholds (Fig. 8). These thresholds are somewhat 

higher than observed and the dependence on GL stronge 
The frequency of instability can be worked out from ( 
to be Qa 1.5q, which is somewhat higher than observed 
From a characteristic equation including $B we get a 
threshold dependence of $8 (Fig. 9) which agrees with 
cbservations. 

r. 
14) 

Taking into account 3(s) or a finite o has a negli- 
gible effect for PSB parameters, Replacing the simple 
control operators assumed here with more realistic ones 
with lower stability phase margins has a stronger effect, 
especially if introduced in one of the fast loops (AVC 
and phase). This explains the difference in Fig. 8. 

Increasing the threshold by a bigger separation of 
loop bandwidths (see (15)) is not very efficient (square 
root scaling), and can only be done to a very limited 
extent. 

Stabilization with Decoupling Matrix 

If we assume no tuning loop, $L = 0, oR = 0 and o 

big, the object we want to control is the right part of 
Fig. 10. For frequencies << u the transfer function ma- 
trix is: 

a,(s) 

f 1 P”(S) =ltY2(1-B(s)) y 
1 { ’ -Y(‘l”“)JpJ (,6) 

If a decoupling matrix equal to the inverse of this ma- 
trix is inserted in front of the control object: 

(17) 

as shown on the left part of Fig. 9, the transfer ma- 
trix (ac,pc) to (aV,pV) becomes a unity matrix as in the 
case of no beam loading. 

3ig DC-variations in ac gill produce big DC-varia- 
tions in pC but no change in pi,, which means that the 
steady state condition oL = 0 will be violated if no 
tuning loop is present, or coupling to the tuning loop 
if this is present. 

P,(S) Lb@) 

yy-qq ; G&r. . , \, ; & . . J 

Dacoupling I Control Object 

Fig. 10 : Decoupling with amplitude and phase control. 

Hcwever, it is seen from Fig. 11 that since 
G xP = Gpp. and G,, = Gpa, we can just as well enter the 
compensation for ac variations through the tuning x;tllis 
is in fact better as then ac variations affect neither 
pC or pV. If x furthermore is entered through the pc to 
aC operator, the system has the same decoupled transmis- 
sions as if no beam loading was present, 

It is easy to take a finite ? into acccunt. The 
result is that C,a and C must include a low pass 
operator #7/(7 + 5). The 2Zgonal elements in the total 
transfer matrix wil; then contain the same operator, as 
is the case for no beam loading. 

Some further manipulation of the block diagram is 
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Conlrol Object 

Fig. 11 : Decoupling with tuning, amplitude and phase 
control. 

required before it can be realized. pc is not available 
as a signal, since the phase modulation is done by fre- 
quency modulation (Fig. 1); however including an inte- 
gration the (l-B(s)) second order highpass operator is 
not a problem, and does not provide any DC-transnission. 
For Y .l, the main transmission of the AVC is through 
the tuning system, which is not easily compensated for 
the desired bandwidth; but one can transmit the high- 
pass part of it through pG without affecting the tuning 
if this highpass part is countercompensated in pL, and 
the crossover frequency is chosen properly. 
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A pppndix A - Phase , Amplitude and Tuning Transmissions 
through Cavity 

If ,one cran\mits d phase- and/or amplitude-modu- 
lated s inusoid.11 signal: 

i(t) = Ref I(1 +a,(t)) eJ““c”PI(‘“/ 

through a transfer function (inpedance) Z(s), the out- 
put signal will in general he bath amplitude- and pi~nsc- 
modulclted: 

v(t)=Re{V(l +av(t))eJ’wc”9z*P~ct~)~ 

For 13~ rrrodlllation indices (a ” I, p “/ l), the tranq- 
missic,n:, of the modulations are line,+r and determined 
b)i : 

G,,(s) = G,,(s) =;(-‘:“;;;;’ + w) = G&s) (Al) 

G,,(s) =-G,,(s) = ;(w- ;;-;z) =G,b) (A21 

For a resonant circuit cavity impedance (Fig. 2) with 

damping rate u, resonating at wr: 

Z(s) = 
2aRs 

*2+ Zm*w? 
(A31 

and detuned an anoun t : 

qJ= w, - w, = u tan $2 (A41 

from the driving frequency tic, we get 

G,(s) = 
o2~l+tan2$4*OI 

82 l 2US •a2~1.!a&#lz) 
(A51 

G,(s) = 
otan+, a 

S2+2ae*u2~1.:an2#l~) (A61 

These are the transmissions from modulations of T-I 
(Fig. 2). Taking into account, that modulations of TT 
are determined by a vector sum of the modulations of 
4 and TG, we get the transfer functions (Fig. 3): 

G;p’,(s)= 
v2d1+tan2& •vlSin9s-t~ncbrcOB~B))+ &+vSh&+ 

k2 l 2a‘+u2~1+tan2#4 (A71 

G$a(sl= 
-u2Y(coa~grtan62ainbgf*u(lan9L.vcorde)s 

B2 l 2171 l i72(1 *tan2&) (A81 

G$‘ab) = G;p,(e); Gfp(e) =-G;.(s) 

G Fp(s) = 
Y(02(tan~:,co~~g-~In~g)-olincpg.) 

e2 + 2us * u2(1 * tan&$~~ (A91 

G ;a(~) = 
~(u2~t8n~Z~h~~ +co@#B)* uCoa+g s) 

a2+ 288 * u2(l+lan2qb,) (A101 
Tuning variations change these transfer functions, but 
for small variations we can neglect that and only con- 
sider the additional amplitude and phase modulations of 
the output caused by tuning variations. Z(s) will be a 
function of some tuning parameter x, Z(s,x). The trans- 
missions from x to pV and aV are linear for small x: 

G,,(s) =s = aa~~(‘uc’x”Gs(s). al;::;~x~~xGC(~) (All) 
CI 

G,,(s) = z = 
alz~iw,,4/axG tsl 

,zljw o,, c* s + aar;;‘iy’x)) G,(s) (Al2) 

If we let x = Awr/7, we get from (A3), (A5) and (A6): 

G,,(s) = 
cd+ US 

52 l 201 l U2fl l lan2&) (A13) 

G,,(s) = 
-02tan+* 

s2 + 2.39 + u2t1+ tan2$4 (A141 

.? ppendix 3 - Characteristic Equation for Complete Sys- 
tem (Fig. 3) 

where B rncans B(s), Gpp means Gpp(?), etc. 
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