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Abstract 

When the working point (Vx,Vy) lies near 
the intersection of two sum resonances that 
arise from the same nonlinear multipole field, 
the width of each resonance is modified by the 
presence of the other. Taking the two third- 
integer resonances 3vx=N and Vx+2Vy=N as an 
example, we have developed an analytical treat- 
ment of this problem and its predictions have 
been compared with numerical results. 

Introduction 

It is well known that a perturbation term 
in the Hamiltonian can lead to resonance be- 
tween the sum or difference of integral mul- 
tiples of the two transverse oscillation fre- 
quencies and a multiple of the revolution 
frequency. Standard methods are available' 
for determining the resonance band width in the 
case of an isolated resonance of this kind, and 
lead to the necessity of avoiding frequencies 
lying within an isolated resonance band. 

Meier and Symon' have explored the region 
near the intersection of a sum and difference 
resonance in an effort to explain how the dif- 
ference resonance (which by itself does not 
lead to unlimited growth of the oscillation 
amplitude) may cause actual instabilities. 
Their analysis starts with a single nonlinear 
perturbing term in the Hamiltonian. In our 
paper we consider two perturbing terms in the 
Hamiltonian which lead to two different sum 
resonances, and explore the region around the 
intersection of these resonances in order to 
determine whether the intersecting resonant 
bands are distorted appreciably. 

Analytic Treatment 

Cur starting point is the Hamiltonian 

H = ixi2+vx2x2+yt2+v y2Y2) /2 

-(ax3/3-bxy2) cos(Ne) (1) 

corresponding to the coupled equations of 
motion 

X"fU 2x = (ax'-by*) cos(NB), (2a) x 

y"+v y2Y = -2bxy cos(N8). (2b) 

*Operated by the Universities Research Asso- 
ciation, Inc., under contract with the U.S. 
Energy Research and Development Administration. 

For the usual sextupole fields, one would have 
a=b, but we will keep a and b independent dur- 
ing the course of the analysis. A standard 
phase-amplitude method is used to analyze the 
resonance terms. Setting 

x=P sin(Vx8+a), y=Q sin(Vy8+B) (3) 

and averaging over all oscillatory terms not 
involving the two resonances 

3Vx=N (da) 

and 

vx+2VY=N' 

we obtain 

(4b) 

PI"-(aP2/8Vx) cosl$ + (bQ2/8Vx) cos;{ (5) 

Q'=(bPQ/4Vy) cosj( (6) 

$‘=A1 + (3aP/8vx) sin@ 

-(3bQ2/8VxP) sin% (7) 

x'=A, + (aP/8Vy) sin0 

-(b/8VxUyP) (4VxP2+~~yQzj sin:>: (8) 

where 

I) = h10+3a 

y = ArR+%+2B 

A = 3Vx-N 
1 

(93 

(9b 

!lOa 

A 
2 

= Vx+2V -N ilOb 
Y 

It is possible to construct a new Hamil- 
tonian in the variables P', Q', i and (3x-$)/2, 
which corresponds to the equations of motion 
(5) - (8), but we have been u;.able to determine 
the modified resonance bands from the fact that 
this Hamiltonian is constant. Instead, WB h-ive 
alternately treated the term in b, an3 +he teri? 1n 
a, as small, and from this have determined the 
way in which each resonance affects the other 
as we approach the intersection from afar. 
This is equivalent to Determining the border 
of stability C, for the resonance 3v,=N up to 
and including terms in (l/A,), and the bordc.r 
of stability A, for the resonance U,+2’J,,,‘:: up 
to and including terms in (l/.1,). 
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The analysis proceeds from (5) - (8) by 
first considering the sinX and cosx terms to 
be rapidly varying compared to the changes 
in the .Jariables P and $. In this way one 
separates all terms into slowly varying and 
rapidly y/aryir.g parts in the form 

PEP -P sir-ix 0 
pQ;+Q; o sinx 

'$ E '+, + '1 

X7;<:+:<; 

cosx 0 
COSX 

0 

(lla) 

(lib) 

(llc) 

(lid) 

where ? , 0 .$ end ;< 
(6), (7j aa (Q,, 

1 are cbtained from (S), 
and are proportional to 

l/h . 
: 

Averaging over x,, o.;e obtains coupled 
dif,erentisl equations for PO and ;J , for 
which an integral of the motion exigts. A 
study of the corresponding trajectories then 
leads to the conclusion that the motion will 
he bounded and stable if the initial value of 

PO (allowing all initial values of Ilo) is less 
than a particular value which depends on a, b, 
c 1 and AZ. Taking into account the arbitrary 
initial value of x0, one converts the con- 
dition on 
the 

the initial value of PO to one on 
initial value of P, usinq (lla). This ul- 

timazely leads to the two borders of the 3v,=~ 
bdnd being given by 

;. --r(3aP/4v) + (3b2Q2/32u2)x 
1 

[Z+(a,'b): (l//$) (12) 

where P and Q are the initial amplitudes (all 
lnltial phases Y and a are permitted) and 
where we have set ‘jx ='J Y 

=‘J in all terms where 
x:h.eir diffcrcnce is 'unrmportant. A similar 
but more complicated expression can be ob- 
tanned z5r the dependence of the borders of 
the c, resonance band on the presence of a 
hiqh frequency term in @. This leads to 

,‘ =r(E,l?‘,) (P+J2 Q) + (a'/12812)x 

:4P'+:v?- P~+Q')'(sbP*/a)l(l/C, ). (13) 
1 

1 t i :s .+ 0 t clear whther the averaging prc- 
.c: ::; is rel-able when tie two csciilatinq terms 
ire comparable i n f r e 7 u en c y . For this reason, 
.&I :7‘i 'I,, :; <! r Eorix'l r.ur;r:ri~zil ':':mput.lticns IusinJ 
~m::ul <;c- r~'i?rt'.-i',?t.,ltic,n-; of the nonlinear terms 
1. 7. + !:r :idm:lt:~ni,irl. 

:::~mvriz,~l Results 

T:~G! rcs+~l u:i.xd for the numeric,>: co;npu- 
t,,tio:! i 11c~.iti;;,il to the 'one described by 
:,! c 1 ! r d n '3 s :"' 7 0 ‘7 ‘:,:r,l Incar tilrn.5 in t‘hc 
U,.ini1ton:1n are ::i-n,llatc:d 'by i-function i31- 
1' :1 1 .s .; . Thr- t-x 1 !i II 0 i: h <I n '7 i: in x jr 7, Cl c I '7 !5 i; 
i' <, :+I ;-. : ii ;; ii 1 .-. c .b ; t 1: !: e iJ I, a I, /I ‘2 b 1 n x ' 

2 
.ir?d y' are 

? r 0 " c r t 1 0 n il 1 r " ‘IX - b :/ ‘ ;ir.d -?bxy, r r3 :5 p E' 3 t i .I c - 
1 .r AI. T w c - b :' - t. w o m a t r 1. r: c s -1 r (i il:ied to transform 

/ x , :< ' ) sind (y,y'I frcn one impTlls13 to the 
:. .I' x t Sir.:c 4 sir.,qle '-function imp:llr:e p,xr 
r I 'I i, 1 I t I ') r. ,z n " f 1 i n I, 1 I. 1 :? ii r IT. 13 n 1 i c c a jy 0 r. i! i? t .Fj , 
I- ,.' 'i 13 r. I t 1 r ; L i; 'J c> 1 1. ,I : : n ^ n - r r: I 0 n 1 t i. r '3 , f I; u r 
ir .~li.;i!:; ,,I- ,i 1 fl I: r n a., t L i! 1.7 -j i q n '; ri r a3 ; !; e (3 , 

-&(@I, 6V?-n/2), -6ce-Tr) 

and 6(8-3~/2). (14) 

Resulting harmonic components are of the fsrm 

cosC(4n+?)el;, n-0,1,2 ,..... (15) 

so that only one harmonic component should be 
dominant for resonances under consideration. 
Results presented here are for x=2, that is, 
for 3v,=2 and .vx+2vy=2. The strength of the 
impulse is chosen such that 

a i (Z/T)." 3/z; 
x b = (2/n)v 1/2 v . x Y 

(16) 

As the initial amplitude of the oscillation, 
we have taken 

p(e=o) = (1.5557x10-4jv :l/", 
X 

(17a) 

Q(O=O) = (1.5557~1O-~jv )l/'.. 
Y 

(17b) 

Since we are interested in the boundary 
of the region in (u x,v ) space inside of which 
all particles remain s able regardless of therr r 
initial phase (a,(S), we have generally chosen 
three "worst" sets of (3,:) such that 

sin(3cc) = 1 for A >3, 
1 

= -1 for C <O 
1 

and 

sin(a+2B) = -1 for L >O, 
2 

i for A CO. 
2 

For example, ix,G) = C30°, 

1200), (1500, 
with Cl>0 and /?,>O, 

600) and (27Oo, OO). Note that 
a change of the value of B by 180° merely 
changes the signs of y and y' with no change 
in the resonance bonndaries. For a few com- 
binations of a; and A,, we have investiqated 
all combinations of rx=OO, 30°, . . . . . 3300 and 
c=oo, 300, . . . ...150" to check that the above 
three sets indeed qive the boundary. Particles 
are regarded as "unstable" if their amplitude, 
eithi:r P cr 3, qrows by a factor thritc or more 
compared to the original value in less than 
10,000 revolutions. Here we are not dealrnq 
with long-zerm beam 
dIffusion3 

instabilities like Arnold 
and 10,OCO revolutions should be 

,adi;juate f,3r our purpos.:. 

AI.1 numerical calc,ilations Ihave been per- 
forned with the CDC-6620 (single precision) 
and PDP-10 (double precisilon) at Fermilab. 
In T,lble 1, the change in the resonance wzdth 
CI 3‘-x=2 ~ril>e to the presence of the resonance 
'.' x -2 -, -2 1s tabuliitcd <is 
i~imltL.i 

a function of the 
;i; 1, . 

r(zsoi-.ance wld&h of 
The effect of 3',1,=2 on the 

+ 2 1, is given in 
Tdblc 2. 

'* x 
Plus ii n d TT i n II s 

y=2 
v 1 I u t: s in d i c a t e , r c -- 

..;,ei:ti~iciy, .I n 1. n c r e a 5 E dL ,li <a $1 cc r e a s f rn the 
'ni id t h . Althouqh tne and1yr;i.s cqiven in the 
prr~v~ou*; :;e,:tion is applicable only when !.Y, i 
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is much larger than or much smaller than !A, I, 
the change in the boundary near the center 
(lA1!=/A*l) is presented.in Table 3 to com- 

plete the picture. The overall shape of the 
distortion in the resonance boundaries is 
illustrated in Fig. 1 where the magnitude of 
the change is intentionally exaggerated in 
some areas in order to show the qualitative 
features. Note that there is a distortion in 
the resonance center lines as well as in the 
boundaries. 

Discussion 

As shown in Table 1, the change in the 
resonance width of 3vx=2 due to the presence 
of the resonance \j ?+2vy=2 1s predicted very 
well by the analytical treatment presented in 
this paper when IO,/ is not too small. On 
the other hand, the effect of 3v,=2 on the 
resonance boundary of v +2vy=2 seems to be 
more complicated and our analysis here is not 
entirely satisfactory. (See Table 2.) One 
difficulty in the comparison of numerical 
results with the theoretical prediction is the 
impossibility of avoiding non-resonating har- 
monic components (6@,108,etc. here) when 
&-function impulses are used. We have tried 
to minimize this effect by taking four im- 
pulses of alternating signs instead of a 
single impulse. The action of the undesirable 
harmonic compcnents is seen in the unperturbed 
values of C, and A*. This is particularly 
serious when one tries to predict the change 
in A, by the resonance 3v,=2. The unperturbed 
value of A2 itself already differs tram the 
theoretical value by as much as (30-40)~10-~, 
a value comparable .with or even larger than 
the predicted magnitude of the change. This 
may explain a somewhat better agreerent one 
can get when one takes the average change for 
A,>0 and CLCO (the third and the fo.xrth 
columns, respectively, in Table 2). 

Results presented here clearly dcnon- 
strate that, when two (or more) resonances 
intersect each other in (wx,v ) plane, there 
is a sizable distortion in thg resonance width 
and in the central line of the resonance. It 
may be necessary to take this into account 
when, for example, one tries to find the 
optimum working line in the tune diagram for 
a ctorsqe ring, 
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Table 1 Change in the resonance width of 
3v =2 due to v t2v =2. 
l/PA, I are in HGm6i[ 

All values except 
Unperturbed widths are 

A1=0.005940 and -0.005978 Plus (minus) 
values indicate an increase (decrease) in the 
width. 

(A) A . 1 VG 

1/; it2 I theory numerical 
A >o A co 

1 i 

5 89 96 91 
10 177 195 188 
20 355 413 402 
30 532 667 651 
40 709 971 948 
50 887 1346 1315 

(B) A .A <O 
1 2 

l//A2 I theory numerical 
A >o A <o 

L I 

5 -30 -28 -34 
10 -59 -61 -65 
20 -118 -127 -129 
30 -177 -200 -196 

4G -236 -282 -276 
50 -296 -379 -366 

Table 2 Chanqe in the resonance width of ‘.iX+ 
2wy=2 due to 3~,=2. 
are in 10w6. 

All values except l//3,/ 
Unperturbed widths are A2= 

0.009553 (with A]>O) and 0.009572 (with hl<O); 
C,=-0.009624 (with h,>O) and -0.009614 (with 
A, CO). Plus (minus) value indicate an increase 
(decrease) in the width. 

(A) A . ,I ;o 
1 7 

5 39 
10 78 
20 156 
30 234 
40 312 
50 390 

(B) A .A co 
1 2 

1/q.“,, I 

5 0 14 -25 
10 1 15 -22 
20 2 21 -14 
30 3 29 -4 
40 3 41 1 0 
50 4 56 27 

theory 

theory 

numerical 
A >G J ‘.Y 0 

2 2 

69 22 
111 62 
2Cl 150 
300 247 
411 363 
416 370 

numerical 
,1 >o :, *<G 

: 
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911964); L.C. Tenq, Performance Lilrita- 
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Table 3 iesonance boundaries near the inter- 
section of 3~,=2 and ‘.J,+~v =2. 
space, v,=2/3+C,/3 and u y=Y 

In (V,,Vy) 
/3+(3A,-A,)/6. 

h . A io A ..A <I) 
A---L-- -L-z 

A 2' h A 
I * I 2 

A1866 . 3 1 .014 -.009712 
-.01895 -.Ol -.014 .009685 

.017 .01016 .012 -.009751 
-.017 -.01026 -.012 .009720 

.008185 .015 .Ol -.009855 
-.008192 -. 1515 -.Ol .009803 

.01194 .I11194 .009170 -.Ol 
-.OllS8 -. 01188 -.007979 .Ol 

.005346 -.015 

-.005410 .015 

.005063 -.0125 
-.005150 .0125 

.004852 -.Ollll 
-.004974 .Ollll 

-L-- Fig 1 Distortion in the resonance bound- 
aries when two resonances 3v,=N and 
V,+2V =N coexist. The magnitude of 
the d!stortion is intentionally 
exaggerated in some areas in order to 
clearly show the qualitative features. 
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