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Abstract

When the working point (vx,vy) lies near
the intersection of two sum resonances that
arise from the same nonlinear multipole field,
the width of each resonance is modified by the
presence of the other. Taking the two third-
integer resonances 3v =N and Vygt+2V, =N as an
example, we have developed an analytical treat-
ment of this problem and its predictions have
been compared with numerical results.

Introduction

It is well known that a perturbation term
in the Hamiltonian can lead to resonance be-
tween the sum or difference of integral mul-
tiples of the two transverse oscillation fre-
quencies and a multiple of the revolution
frequency. Standard methods are available
for determining the resonance band width in the
case of an isolated resonance of this kind, and
lead to the necessity of avoiding frequencies
lying within an isolated resonance band.
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Meier and Symon2 have explored the region
near the intersection of a sum and difference
resonance in an effort to explain how the dif-
ference resonance (which by itself does not
lead to unlimited growth of the oscillation
amplitude) may cause actual instabilities.
Their analysis starts with a single nonlinear
perturbing term in the Hamiltonian. In our
paper we consider two perturbing terms in the
Hamiltonian which lead to two different sum
resonances, and explore the region around the
intersection of these resonances in order to
determine whether the intersecting resonant
bands are distorted appreciably.

Analytic Treatment

Cur starting point is the Hamiltonian

I r2+ 2 2+ 12 2.2y ,
H (x vx x“+y +vy Yy i1/2

~(ax3/3-bxy?) cos(NO) (1)

corresponding to the coupled equations of
motion
2x = (axz—byz) cos (NB),

x"+V (2a)

x
i

(2b)

#

2y -2bxy cos(N8).
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For the usual sextupole fields, one would have
a=b, but we will keep a and b independent dur-
ing the course of the analysis. A standard
phase-amplitude method is used to analyze the
resonance terms. Setting

x=P sin(vx8+a), y=Q sin(vy8+8) (3)

over all oscillatory terms not
two resonances

and averaging
involving the

3v_=N (da)
X
and
V_+2v_=N, (4b)
X ¥
we obtain
P'=-(aP?/8V_ ) cos} + (bQ?/8v ) cosy (5)
Q'=(bPQ/4vy) cosy (€)
w'zAl + (3aP/8vx) siny
-(3bQ2/8vxP) siny (7)
x'=A2 + (aP/Svy) siny
~ 2.0 A2y adme
(b/8vxvyp)(4vxp +qu ) siny (8)
where
yo= A16+3a (9a)
X = A26+a+28 (9b)
A = 3v_-N (10a)
1 X
A = v _+2v =N (10b)
2 X Y

It is possible to construct a new Hamil-
tonian in the variables le Qz, v and (3yx-¥l/2,
which corresponds to the equations of motion
(5) - (8), but we have been unable to determine
the modified resonance bands from the fact that
this Hamiltonian is constant. Instead, we have
alternately treated the term in b, and the
a, as small, and from this have determined the
way in which each resonance affects the other
as we approach the intersection from afar.
This is equivalent to Jdetermining the border
of stability Al for the resonance 3v,=N up o
and including terms in (1/&2), and the border
of stability 4, for the resonance Vy+2V,=X up
to and including terms in (1/1,).
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The analysis proceeds from (5) (8) by
first considering the siny and cos¥ terms to
be rapidly varying compared to the changes
in the wvariables P and y. In this way one
separates all terms into slowly varying and

rapidly wvarying parts in the form
P:PO+P1 siny (11a)
Q= i
© Qo“'Q1 sinx (11lb)
y:wo+¢l COSXO {(llc)
X:XO+Xl COSXo (114)
where P , Q ,wl and ¥, are ocbtained from (5),
(6}, (7§ and (8), and are proportional to
l/i?. Averaging over Yx_, one obtains coupled

differential equations for P, and ¥ _, for
which an integral cf the motion exists. A
study of the corresponding trajectories then
leads to the conclusion that the motion will
be bounded and stakle if the initial value of
P, (allowing all initial values of Yg) is less
than a particular value which depends on a, b,
AI and A Taking into account the arbitrary
initial value of Xor One converts the con-
dition on the initial value of P, to one on
the initial wvalue of P; using {(1la). This ul-
timately leads to the two borders of the 3V =N
band being given by

4 =t(3aP/4v) + (3b20%/32v?)x
1
(2% (a/p) (172 ) (12)
wnere P and Q are the initial amplitudes (all

initial phases o and B are permitted) and
where we have set Vg3V,=W in all terms where
—helr difference is unimportant. A similar
but mcre complicated expression can be ob-
for dependence of the borders of
resonance band on the presence of a
high frequency term in §. This leads to

tained the

the 2

VY (P+Y2 Q) + (a®/128)%)x

T4Pt+2v7 PQ+Q2)1(8bP2/a)](l/ﬁl). (13)

It is not zlear whother the averaging pro-
: is reliable when the two cscillating terms
are comparable in frezuency. For this reason,

¥ rerformed mputaticns using

reprezoentations nonlinear terms

< Hamiltonlan.

runerical oo
of the

SR

+

Numerizal Results

The medel used for the numerical compu-
tation ias ilentical to the one described by
Meler and Symon.” ¥onlinear terms in the
Hamiltonian are simalated by S-furnction im-

) There is ro change in x or v acraoss
impul=ze but chiances in x' and y' are
propcrtional to axQ—by2 ard -2bxy, respective-
L. Twe-by-two matrices are used to transform
(x,x'} and (y,y') from ore impulse to the
next. S5irce a single £-function impulse per
revolution containg all harmonic compornents,
resonating as well ags non-~ sonating, focur
imzulses of alternating signs are used,
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-8(8), S(8-m/2), -6(E-m)

and §(B-3m/2). (14)

Resulting harmonic components are of the form

cosl(an+2)€7; n=0,1,2,..... (15)

so that only one harmonic component should be
dominant for resonances under consideration.

Results presented here are for N=2, that is,

for 3vyg=2 and v +2v =2. The strength cf the

impulse is chosen slich that

/o R
a = (2/m)v 3%, = (2/m)v Wiy (16)

As the initial amplitude of the oscillation,
we have taken
P(8=0) = (1.5557x107%/v )1/%, (17a)
Q(8=0) = (1.5557x10_“/vy)1/2“ (17b)
Since we are interested in the boundary
of the region in (vx,v } space inside of which
all particles remain s%able regardless of their
initial phase (a,R), we have generally chosen
three "worst" sets of (a,2) such that
sin(3a) = 1 for A >0,
1
= -1 for A <0
1
and
sin(n+2B8) = -1 for A >0,
2
= 1 for A <0O.
For example, with 4,>0 and 4,>0, {(a,B) = (309,
120°), (150°, 600) and (2709, 0°). Note that

a change of the value of B by 180° merely
changes the signs of y and y' with no change
in the resonance boundaries. For a few com-
binations of A, and A,, we have investigated
all combinations of =09, 300, ...., 3309 and
R=0°, 30°, ,150° to check that the above
three sets indeced give the boundary. Particles
are regarded as "unstable" if their amplitude,
either P or 0, grocws by a factor three oar more
compared to the original value in less than
10,000 revolutions. Here we are not dealing
with long-term beam instabilities like Arnold
4iffusion’® and 10,000 revolutions should be
adeguate for our purpose.

A1l numerical calculations have been per~
formed with the CDC-6620 (single precision)
and PDP-10 (double precision) at Fermilab.

In Table 1, the chance in the resonance width
¢f 3V, _=2 due to the presence of the resonance
U T2U,m2 is tabulated as a function of the
quantilty l/?ﬁpi. The effect of 3w _=2 on the
resonance width of v +2v,=2 is given in

Table 2. Plus and minus values indicate, re-
spectively, an increase and a decrease in the
width. Although the analysis given in the
previous section is applicable only when llzf



is much larger than or much smaller than !AII, Table 1 Change in the rescnance width of

the change in the boundary near the center =2 due to Vg +2v =2. All values except
(IA i IA |} is presented-in Table 3 to com- l/TAzf are in lO Unperturbed widths are
plete the picture. The overall shape of the AX—O 005940 and —O 005978 Plus (minus)
distortion in the resonance boundaries is values indicate an increase (decrease) in the
illustrated in Fig. 1 where the magnitude of width.
the change is intentionally exaggerated in
some areas in order to show the gualitative (a) A A >0
features. Note that there is a distortion in L 2
-+ 3 e A ISt .
gzingziizz?ce center lines as well as in the l/}Azl theory numerical
4 >0 A <0
1 1
Discussion 5 89 96 31
As shown in Table 1, the change in the Lo 177 195 188
. _ 20 355 413 402
resonance width of 3Vx—2 due to the presence 30 532 667 651
of the resonance v, +2V =2 is predicted very
< . 40 709 971 948
well by the analytical treatment presented in 887 1346 1315
this paper when !AZI is not too small. On >0
the other hand, the effect of 3v,=2 on the (8) A A <0
resonance boundary of v +2v_,=2 seems to be 1 2
more complicated and our analysis here is not
entirely satisfactory. (See Table 2.) One 1/0a I theory numerical
difficulty in the comparison of numerical 2 A >0 A <0
results with the theoretical prediction is the ! 1
impossibility of avoiding non-resonating har- 5 -30 -28 -34
monic components (66,100,etc. here) when 10 -59 -61 -65
§-function impulses are used. We have tried 20 ~118 -127 ~-129
to minimize this effect by taking four im- 30 -177 -200 ~-198
pulses of alternating signs instead of a 40 -236 -282 -27¢
single impulse. The action of the undesirable 50 -2986 -379 -3686
harmonic compcnents is seen in the ungerturbed
values of 4, and 4,. This is particularly
serious when one tries to predict the change Table 2 Change in the resonance width of v, +
in &, by the resonance 3vy,=2. The unperturbed 2vy-2 due to 3v,=2. All values except l/fAl]
value of A, itself already differs from the are in 107%. Unperturbed widths are A2=
theoretical value by as much as (30~40)x10"%, 0.009553 (with A1>O) and £.008572 (with A;<0);
a value comparable with or even larger than A2=~O.OO9624 (with A1>O) and ~0.009614 (with
the predicted magnitude of the change. This A <0). Plus (minus) value indicate an increase
may explain a somewhat better agreement one (decrease) in the width.
can get when one takes the average change for
A2>O and A2<O (the third and the fourth (A) A A >0
columns, respectively, in Table 2). S S -

Results presented here clearly demon- 1/]A1I theory A >:umer1ca} <0
strate that, when two (or more) resonances 2 Ty
intersect each other in (Vysv ) plane, there
. . . . X R 5 39 £2 22
is a sizable distortion in th& resconance width 10 78 111 62
and in the central line of the resonance. It 20 156 501 150
may be necessary to take this into account

X . 30 234 300 247
whe?, for exemplo{ ong tries to fl?d the 40 312 411 363
optimun worklng line in the tune diagram for 50 330 416 370
a storage ring.
- A
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Table 3 Resonance boundaries near the inter-
section of 3v,=2 and vx+2v =2, In (vx,vy)
space, vx=2/3+A1/3 and vy=¥/3+(3A2—A1)/6.
A A >0 A TA <0
1 2 1 2
A A A A
1 2 1 2
.01866 .01 .014 -.009712
-.01895 -.01 .014 .009685
.017 .01016 .012 -.009751
-.017 -.01026 .012 .009720
.008185 . 015 .01 -.009855
-.008182 -.015 .01 .009803
.01194 .01194 .009170 -.01
-.01188 -.01188 .007979 .01
.005346 -.015
.005410 .015
.005063 -.0125
.00515¢0 .0125
.004852 -.01111
.004974 .01111
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Distortion in the resonance bound-
aries when two resonances 3Vy,=N and
Vgt2V,=N coexist. The magnitude of
the distortion is intentionally
exaggerated in some areas in order to
clearly show the gualitative features.



