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CAN COHERENT UV RADIATION BE OBTAINED 
FROM EXISTING ELECTRON STORAGE RINGS? 

H. Schijnauer A\ 
MPS Division, CERN, :eneva, Switzerland”’ 

Recently built electron storage rings provide very 
high transverse electron densities in their low-5 
insertions. This suggests the feasibility of laser ac- 
tion of an electron storage ring at optical and even 
shorter wavelengths. Csing a semiclassical theory of 
induced synchrotron radiation’, it is shown that 
special bending devices should in fact allow for light 
amplification in this spectral range. The special bend- 
ing unit should be an electrostatic deflector providing 
an intense electric field of Coulomb type. Lower wave- 
length limits for laser action are es.timated using 
reported or design performances of SPEAR I and DORIS. 
For the latter machine this limit is of the order Of 
3000 1, provided that an electric field strength of 
10 kV/cm could be achieved and the deflector is placed 
in a low-3 insertion. 

energy levels that differ just by Kwo and are of in- 
finite degeneracy. However, one cannot expect a series 
of special lines of distance ~3, since the levels are 
broadened by the interaction with the electromagnetic 
field to a width of 
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3 gives the magnitude of the spectral 
; yzyof order LO3 + 10’ and therefore the 
lines largely overlap, producing a continuous 

spectrum. It will turn out that this fact is crucial 
for the theory presented here. We have transitions to 
many neighbouring levels contributing to the emission 
and absorption of photons of given frequency w, and 
hence the density of final states l/w0 enters into the 
transition probability. The revolution frequency uuo 
depends on the energy of the electron in a way that is 
determined by the character of the guiding field. 

Introduction 

In order to see how it enters, we consider the 
expression for the power spontaneously emitted into 
unit solid angle and unit frequency interval: 

Soon after the discovery of the laser principle, 
search for new laser candidates extended into numerous 
physical systems , and already in 1959 the criteria for 
amplification of electromagnetic waves by an ensemble 
of gyrating electrons were given2, and subsequently 
experimentally verified3. These devices, however, made 
use of rather low-energy beams. In this now-relativistic 
regime , only microwaves could be amplified or generated. 
Sokolov and Iernov4 described induced radiation pro- 
cesses of a relativistic electron in a homogeneous mag- 
netic field. Some years ago the author used a semi- 
classical. approach to investigate the influence of the 
field index of a weakly focusing bending field of mag- 
netic or electrostatic typel. The criteria for amplifi- 
cation and laser action given there apply only to the 
case of a zero emittance beam in a weakly focusing, 
circular machine. 

W(w,E,$) = t Wp(W) a P=%* 

where W,(E,$) is the standard expression 4 for the emis- 
sion into the p-th harmonic of ~3 and with an angle $ 
to the orbital plane: 

f%$,( 2 f3/2) = . i 1 3 

wpwi =% ‘” 1 (2) 

f sin’ $ K2 IEf 
l/3’ 3 

3’2) ,. i = 2 

f = 1 - 8:cosQ = 5 + C’sin2y. 

Based on some assumptions - essentially the valid- 
ity of tne classical description of synchrotron radia- 
tion in the domain cf interest - we intend to show that 
laser action in the UV range of existing electron 
storage rings coupled to a suitable resonator could be 
feasible. However, this requires a special electrosta- 
tic bending element producing very high electric field 
strengths, to be placed in a lcw-6 insertion. Magnetic 
bending seems not to allow laser action of wavelength 
ranges ‘below one millimeter, dnd this only if they are 
specially designed (field index n = 1). 

(Polarization index i = 1 means the zlectric field v2c- 
tar 10 fall into the orbital plane; ez is normal to el 
and k/k.) In these formulae tiO, R, p, and f depend on 
the energy E of the electron. Hence for the power 
emitted by an electron of energy E we write: 

W(u,E,Q) = W (E,&)g(E-fici;)(ii; + 1) , (3) em ? 

g(E) = l/,,O(E) being the density of final states and ?i; 
denoting the mean number of photons per mode of the 
radiation field. 

Principle 

The basic reference] being in German, we want to 
outline briefly the argumentation given there. 

A classical electron cn a circular orbit emits only 
multiples of its revolution frequency tic. Quantum theory 
gives Eor the electron in R homogeneous magnetic field 

The leading terms (giving the classical approxi- 
mation) of the squared matrix elements are identical for 
emitting and absorbing transitions. Hence we write for 
the power absorbed by the same electron 

W~~,E,l)abs = Wp(E + tiu,b)g(E + h~‘:)?i~ . (4) 

If there .lre N electrons interacting with the radiation 
field, the gain of 7iz with time is given by: 

*) Based on work done at the Vienna Institute of 
Technology, 

1821 

© 1975 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



N 1 
=V 

- 

gain resPb) hw p 
W (E,J-‘)g(E-%)(iiz+l) - 

Wp(Euhw,$)g(E+Liw)-ii , (5) 

. ..mode density of the radiation field, 

L’res = A Lre, is the effective resonator volume. We will 
put A equal to the beam cross-section. The loss rate is 
given by: 

diic [ 1 ii+ k 
ii-+ c 
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dt 
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res 

where all kinds of losses are comprised in the reflec- 
tion factor r < 1. 

The criterion for laser action is then 

N 
G Wp(E,$)g(E-W - Wp(E+hw,$)g(E+tiw) 1 > 

(I-r)A 
3. (‘) 

In all cases of function interest fiw << E holds and we 
can write for the expression in brackets 

dW 
- 5.i ik -$ g + 2wp @ 1 [ =_ tiw %$$ + kyu)$ %] g . (8) 

In order to take into account the finite emittance of 
the electron beam, we should average over the angles z’ 
of the trajectories with the orbital plane. We will, 
however, be interested in emission into angles 
ib > z;,, = amax/ z and therefore drop the integration 
over 2’. We will equally neglect the energy spread of 
the beam. With these assumptions we put Eq. (7) finally 
into the form: 

(1 - r)A 

iziLL2u+- W(lu,i) c&i dJ G 
av g I dy dE 

(9) 

‘We will use equation (9) in order to.obtain lower 
limits for the wavelength of possible laser action for 
some existing machines. 

eBR = pc = mgc26Y , 

we obtain 

Basic Assumptions and Restrictions of this Theory and 

The results abtdined in Section above apply strict- 
ly only to the case of a homogeneous magnetic bending 
field, because we made use of the degeneracy of the 
energy eigenvalues mentioned above when putting the 
density of final states equal to l/,tiO. 

1R2-- 1 R d”,O 1 ,.I -a 
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The total energy is E = m0yc2 and 

For the inhomogeneous field the degenerated energy 
eigenvalues split up into a double series of levels with 
distances Ti~g‘:~ and ?%J~‘J~, respectively (vr = fi, 
bvz = Jn). Note that ti~3, br, 3s do not denote revolution 
frequency and tunes of the actual machine, but the 
corresponding quantities of a virtual, weakly focusing 
circular machine obtained by extending the investigated 
bending field to the whole azimuth. Tne use of a simple 
density l/,,, remains just i fied, however, as long as the 
major part of the photon energy goes into the change 
Of orbital energy. An inspection of the matrix elements 
suggests that this is in fact the case if the horizontal 
becatron amplitudes are not too large. Any influence of 
this kind would shor; up in the spectrum and also in the 
total emitted power. The quantum corrections to the 
latter have been calculated for the homogeneous magnetic 
field by Sokolov et al. and by Schwinger5 and for the 

Coulomb field 

The potential energy has the form U(R) = K w and 
from 

u dU U -mo.fy=-;Tii=‘ii 

one obtains immediateiy 

u-- B2ymCc2 

and the total energy is given by 

E a moc2y+ ” = ?$t ; i$ = - .d.v . 
m()d (16) 

Noticing that the laser criterion (9) contains the fac- 

inhomogeneous field by Gutbrod6, who obtained: 

W =w l-$$J3 
X L-+n 

qu cl 
L-y2 ( 
R L-n (LO) 

Xc Compton wavelength, R bending radius. So quantum 
effects on the radiation spectrum should be negligible 
as Long as 

2 2 
T-r, = +<2 x 1011 R 

n “r (ml ’ 
(11) 

which is certainly met in all cases to be considered. 
No such estimate exists for electrostatic bending 
fields, but for a very rough guess we may insert the 
corresponding value of vr = L/y for a Coulomb bending 
field. The resulting condition, using 

R(m) = 
5.lLy 

Eb(kV/cm) 
(12) 

would then be 

Y3 
10'2 << - 
Eb 

(13) 

If we assume a value of 10 kV/cm for the electric 
bending field Et,, condition (13) yields y < 5 x 103, 
and the validity of the results obtained for the 
Coulomb bending field is restricted to electron energies 
below 2.5 GeV. 

Properties of the deflecting fields 

In order to perform the derivatives in formula (8), 
we need the derivatives in y of some quantities as R, 
~0, etc. They obviously depend on the properties of the 
guiding field. 

Magnetic bending field of field index n =-g z 

From 

(14) 

(15) 
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tor dy/dE and comparing (15) and (16) one notes that 
one gains the enormous factor y2 when using a Coulomb 
deflection field instead of magnetic bending. We further 
obtain from (15) 

dR R duo wo 
-=--* -=-f d-t Y dy Y 

In order to treat both cases at once, we unify eqs. (14) 
and (17) by introducing a parameter q, which stands for 

q=n-1 . . . for magnetic bending 
q=l for the Coulomb field, (18) . . . 

and we can write 

Y dR Yifig-.LdOc=-l 
Rdy=;dy w. d’v P * 

(19) 

The values of a weakly focusing magnetic field are 
well known: 

‘Jr = ii-n , v z = v/n . (20) 

For the electric Coulomb field, they are given by (see 
Ref. 7 e.g.): 

1 
‘Jr = 7 , vz = 1 . (21) 

We evaluate now the expression in square brackets in 
the denominator of the r.h.s. of the criterion (9), 
using Eqs. (2) and (19): 

6 re 
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[ 
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- & Y~K,,,(Y)K,,,(Y) , 
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For angles $ > l/y we may neglect the second term in the 
Gi’S, and f becomes f k $*. Both functions Gi(y) are 
negative for y 2 0.5 and have significant values only 
for y % 1; for large values of y they behave prop. to 
y exp(- 2~). We need the negative sign in the case of 
the electrostatic deflecting field for then the factor 
dy/dE is negative. In the following we will drop the 
polarization index, dealing only with the more favour- 
able polarization i = 1. The fact that y needs to be of 
order one introduces an interdependence of o, y, R and 
$. From Eq. (23) we deduce 

- ^ I- 
f= +Yp L’J=++$2) 

1 1 
y’yl. (24) 

This will determine the angle IL and we anticipate the 
values consistent with our results to be obtained 
below: for the parameters of DORIS, a wavelength of 
3 10-5 cm and Eb = 10 kV/cm, fy2 = 4.6, q = 1 and 
J, = 1.9/Y ; G1(l) = - 0.276. 

For a magnetic deflector l/q = l/(1 - n); we 
will extract this factor from G1 and will write 

G,(Y) = G(y)hr2 . (25) 

Application to existing storage rings 

In order to see what one can expect we take some 
data from the 1974 Catalogue of High Energy Accelera- 
tors (Appendix to Ref. 8) and from Ref. 9. They are 

Parameter 

Energy 

Y 

Currant, per beam 

frev 

N 

B at interaction 
V region 

Bunch dimensions at 
interaction region 

Spear I DORIS Unit 

2.5 3 GeV 

4.9 x 103 5.9 x lo3 

0.22 j 0.9 A 

1.28 I 1.04 MHz 

I 10’2 ’ 5.4 x 10’2 
I 

0.05 0.1 m 
/ , 

300 x 3 x 0.08 40 x 0.6 x 0.03 nun3 

Beam cross section A 
at interaction region 

2.4 1 1O-3 1.8 x LO-' CD2 

A” (see Eq. 26) 5.7 x 10’ 6.2 x lo3 Cm2 
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not at all up-to-date (SPEAR being transformed into 
SPEAR II in the meanwhile), but may still represent 
typical performances obtained or to be expected from 
recent storage rings. The parameters to be used are 
compiled in Table I. 

In order to scale the beam cross-section A to 
other energies, we suppose that the vertical betatron 
oscillations can be decoupled from the radial ones. 
In this case the beam height is mainly determined by 
scattering on the residual gas. From Ref. 10 we take 
for the energy dependence of the emittances: 

‘h = Fh y2 

tV = -qJ ‘i -6 

for given machine lattice and residual gas properties. 
The resulting scaling low for the beam cross-section A 
is then 

A = x y-2 , (26) 

We can now rewrite Eq. (9) 

A2 _ (1 - r) r2 R fy L 1 2 
g‘T<k~jy2 ‘r p N (27) 

where we used Eqs. (16), 
to unify the expressions 
tic bending. We use Eq. 
Rby : 

R=Ey, ‘ii =511 
Eb 

(cm) (kV/ClT 

0.17 or jy =- 
B 

(21) and (25) respectively, 
for magnetic and electrosta- 
24) to eliminate f and express 

for electrostatic bending 

for magnetic bending, 

(cm) CT) 

and obtain 

Aid3 , (1 - r) 77 2 Ti:/3 \tr2 -l/3 ‘r2 
N 4m(*=CR yz’ (28) 

Here we tried to put machine parameters (except v) and 
fixed ones into C; the number of stored particles, 
being determined by the single beam limit, ought also 
to be scaled with y, but no obvious scaling law is 
offered. Finally, in the wavelength range to be dealt 
with, good reflectors are available and we will put 
(1 - r) ‘1. 10-I. Using the data compiled in Table I we 
obtain the following machine constants C for the two 
machines : 

TABLE II 

Electrostatic(Coulomb)Bending Enl/ 
Assumed: ,<; = ; l-n j = IO--;’ ? 1 

“r = F 

! " 0.3 cm - SPEAR I - 1 > 4.1 * 1o-4 cm 

:, . . O.iiicm - DCRIS - :4-1.5 y 10 -5 cm 

SPEAR I DORIS 

C 5.8 x 10'1 1.2 x lo3 cm 

C 3/4 3.7 x 103 2 x 102 cm314# 

c3/4 can now be put into 
312 

A ’ c3/4~~ I4 vr 
q* 

Equation (29) is now evaluated separately for electric 
and magnetic guiding field, and the resulting wave- 
length limits are compiled in Table II. 

One notices immediately that magnetic bending 
allows only generation of microwaves and might rather 
be used to pump energy into the beam. 

The orders of magnitude estimated for Coulomb bend- 
ing look more promising, but they are subject to 
restrictions : the beam energies assumed to calculate 
the short-wavelength limits for light generation 
- 2.5 GeV and 3 GeV, respectively - violate the condi- 
tion (13) for applicability of the quasi-classical 
theory used throughout. Remember however that condition 
(13) is not well-founded. For a wavelength of 3x10-5cm, 
the adequate beam energy in DORIS would be 2.1 GeV, what 
looks a little safer. Of course only a fully quantum 
mechanical approach can tell the limits of the quasi- 
classical theory presented here and how the implication 
of quantum effects would change the results. In view of 
the physical possibilities offered by such a device, it 
might be worthwhile to study this problem more. But 
even in the domain of longer wavelengths, where classi- 
cal theory is expected to be fully applicable, the 
available power and the particular properties of such a 
light source might be of physical interest. 
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