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1. Introduction

A symmetrical arrangement of sextupole magnets is
included in the design of large electron-positron
storage rings so as to provide low values of
chromaticity. The strength of the sextupoles is such
that they contribute appreciable non-linear effects.
The maximum number of particles that can be brought
into collision in the rings is then determined by the
combined effects on particle motion of the sextupole
fields and the beam-beam space charge forces.

Electrons and positrons collide at a few inter-
action regions where there are linear and non-linear
components of the space charge forces between the
colliding beams. The non-linear components excite
non-linear resonances, while the linear components
may be considered to introduce a modified g-function
throughout the magnet lattice. Such a modified
g-profile alters the non-linear contributions of the
Tattice sextupoles, and distributions of sextupoles
which are optimised prior to beams being brought into
collision are, in general, not optimum for the
collision mode. Also, off-momentum particles travel
of f-raxis through the sextupoles which adds an
equivalent quadrupole effect. The oscillation of an
off-momentum particle may be analysed by assuming
that the quadrupole term gives a further change in
the B-function, with consequent effect on the non-
linear motion.

Approximate methods are described for estimating
the resonance widths due to the combined action of
the sextupoles and the beam-beam forces. In
particular, the fourth-order terms due to the
sextupoles are obtained, both the resonance terms and
those terms which give the variation of tune with
amplitude. This work was initiated to assess
acceptable sextupole distributions, to act as a guide
in interpreting detailed tracking programs and to
obtain estimates of possible beam-beam limits. A more
accurate treatment would extend the analysis to
include betatron-synchrotron coupling.

2. Non-Linear Resonance Theory

R Hagedorn! is one of a number of authors who
has analysed particle motion in accelerators under
the presence of non-linear magnetic fields. He gives
a general analysis of coupled transverse betatron
motion, using a co-ordinate system (x, y, 8) where
particle azimuth is defined by the angle 6 and the
plane {x, y) is orthogonal to the direction of motion.
in this co-ordinate system, 2n-pole fields have
complex Fourier components of potential of the form
x\N"d) yG eipd, where n, q and p are integers.
Hagedorn first derives nth order Hamiltonians to
describe the non-linear motion that results from the
2n-pole fields. Resonance is defined by
{n-q) U + q Qy = p, where Q;, and Q, are betatron
tunes. For the particular case of sextupoles, where
n = 3, Hagedorn continues the analysis to the next
approximation and finds the sextupole contributions to
the fourth-order Hamiltonians. Such terms are
significant for the sextupole distributions required
in large et-e” storage rings.

In a later report, G Guignard® obtains a more
convenient expression for the nth order Hamiltonians
of the 2n-pole fields. These are given as a function
of the lattice f-values and the azimuthal distribution
of the 2n-pole elements. The nomenclature used for
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the nth order Hamiltonian coefficients is hgzzm( )
where n = (j+k+1+m) and q = (1+m). J P
Guignard derives widths of the sum resonances in terms
of these h coefficients. Expressions for third order
resonances are given in section 3.

Examples of the nomenclature are given for two
resonance lines shown in Figure 3, which is drawn for
Q values near 19.15, a possible operating point for
the proposed storage ring, EPIC:

(3) =
holZO(ZO) for ZQV-Qh = 20, and
L (8)

2020(76)  for 2Q +2Q, = 76.

The contribution to fourth-order Hamiltonians
that arises from sextupole fields is given by
Hagedorn, as infinite sums of products of pairs of the
third-order coefficients. Examples of these infinite
sums are given in section & for sum and difference
resonances. The following terms give the variations
of Qy and Q as a function of the oscillation
amplitudes:

(%) ) (L)
92200(0)*  Jo022(0)*  i111{0)

As the infinite sums involve products of pairs of
the third-order coefficients, the effect of an
individual sextupole depends not only on its magnitude
and on the local 8-functions but on the strengths of
all the sextupoles in the storage ring and on the
B-values at each sextupole.

Space charge fields may also be analysed for
resonance effects by deriving the relevant non-linear
terms. This approach has been adopted by B W Montague’
E Keil“ and A G Ruggiero®. In the case of head-on
et-e” collisions, with Gaussian particle distributions
in the x, y directions, the space charge potential may
be expanded as an infinite series of terms with even-
order powers of x and y. The lowest order terms
involve ¥ or y2 and lead to linear focussing in the
x and y directions at each interaction region. The
linear terms may be separated from the higher order
terms and may be considered as introducing a 8-change
through the lattice. In particular, the minimum
g-value at the interaction point, 8% will be perturbed
to some new value, B**:

B:’U’: =

9 1

g*/[1 - i + 2n cot u)

where pu is the phase shift of the betatron motion per
superperiod, and

n = 0.5 8%/F

with F the equivalent focal length of the linear beam-
beam lens. Any given non-linear space charge term will
contribute to a particular resonance, and the resonance
width is obtained from the appropriate Guignard
integral. Since there is only one interaction point
per superperiod, the integral is readily evaluated.

The correct B-values to use in the integral are the

8"" values given above. A typical resonance due to
non-linear space charge terms is evaluated in

section 5. For the motion of an off-momentum particle,
there is an additional change in 8** due to the action
of the chromaticity-correcting sextupoles.



3. Examples of Third-Order Hamiltonian Coefficients

Again refer to Figure 3 for examples of resonance
lines. The operating Q-point is shown near 19.15,
though alternative points exist near 18.15 and 15.15.
With four superperiods in EPIC, there are five neigh-
bouring, systematic, third-order resanances which may
be excited by the lattice sextupoles. There are no
equivalent third-order terms in the beam-beam space
charge forces in the particular case of head-on
collisions. The coefficients that describe these five
systematic third-order resonances are:

h(3) (3) h(3) h(3) h(3)
3000(56)"’ 3000(60) 1020(56)* "'1020(60)* '0120(20) "

General formulae for Hamiltonians and resonance
widths are given in reference (2). These are defined
in terms of the parameters:

R, the mean radius of the storage ring,

s, the length along the orbit measured
from the interaction point,

Bh,sv, the lattice g-functions at the

positions of the non-linear elements,
& €y the horizontal and vertical beam
emi ttances, and
K, the parameter defining the strength
of the non-linear element. For
sextupoles, a normalised strength is
defined with ¥ B /B
=32 /e

Resonance widths far third-order sum resonances
are given by:

se (for 3Q =p) = IB/Re | h{

3000(P) |

3
- - v | R (3)

re (for ZQV+Qh-p) = 8(]+th)/REh I'n 1020(p) |
Ex?mples of th:r? order coefficients are given

3000(56) "¢ hlozo (60)°

RE

for h

(‘PTYR .
i [ - TBpYBER K

.3
J ———ﬁ8;~——‘exp 2 1 ds)
-7R h
-56is . ds (3)
exp ( R ;> ] R = M3000(56)
!-‘{"TTR E
‘Bv BvR K . Qh 1 sz 2 ]
} TTTE. o eXP i —_ = =+ < "3 \d9
_R ki s R Bh Bv_!

-60is . ds f(3)
exp ( R :) ] X T Mo20(60)

Many further third-order coefficients must be
evaluated in order to obtain the fourth-order
Hamiltonians which describe the fourth-order effect
of the sextupoles. These include:

(3) (3) (3) (3) (3}
"3000(p)> "1020(p)" "0120(p) " "2100(p)* M1011(p)
where p is any integ visible by the superperiod

?r di
number. The terms hz% 0
resonances of third or eg
order resonances.

and h ) are hot
yet con? éale to fourth-
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4, Fourth-Order Hamiltonians Due To Sextupoles

The coefficients of interest for the resonance
diagram of Figure 3 are:

(%) (") W) (%) (4)
92200(0)* Y0022(0)* Ft111¢0)’ J4000(76)" Yaoha(76),
(4) (4)

92020(76)* 92002(0)"

All but the last of these is derived in the form
of infinite sums in reference (1), eg

(4) -

< 60
94000(76) PLooo (76) * 3'; 2‘00(?é 3?00(7642)
h

p

The first term arises from any octupoles present,
while the summation term is for the third-order
coefficients due to sextupoles. An additianal
summation term is required if skew sextupole fields
are present.

Resonance widths for the sum resonances are:

) 3 (4)
b (for 4Q, =p) = 32 R | aug00(p |
(for 20,420,) = 8 (1+ 2% Rey Jalg)y )|

The variation of Q and Qh as a function of the
beam emittances is:-

o (%) %)
5, = iR Qg 9y1100) * 28, 9p022(0)!
50 = iR [e (%) + 2 (4) ]

h v 31111 (0) ®h 92200(0)

Finally, there is the difference resonance
2Q,-2Qxp=0, which is not derived in reference (1).
This resonance line lies along the leading diagonal
of Figure 3. |t may be excited both by the lattice
sextupoles and by the ¥ +y component of the beam-beam
space charge potential. The contribution of the
lattice sextupoles is:

(3) 3) (3)
I g (Flooz(—p)[h21oo(p)*2hlo11(p)]
(q, -p)

(4)
92002 (0)

P
3p(3) (3)

3000(-p) "0i02(p)

-(Q+2Q,+p)

5. Hamiltonians Due to Space Charge Fields

Space charge potentials have been derived in
reference (3) for a beam of Gaussian distributions in
both the x and y directions. An expansion of the
potential is an infinite series of terms involving
even order powers of x and y. The potential function
may be used to obtain the angular deflection of a
particle of one beam at an interaction region on
passing a bunch of N particles of the second beam.

In the x direction, the angular deflection for head-on
+

eT-e” collisions is:
dx/ds = - 2Nrer(x,y)/ych(qh+ov)
where r, is the classical electron radius

(= e2/me? hme),
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¥ is the ratio of the particle energy to its
rest energy,

9p,10 are standard deviations of the beam
M distributions at the interaction region in
the x and y directions respectively, and
2 2 4
\ X\ X
Flx,y) = x D= dy, G2 - (g—) +d, ()
h \Y
2 5.2 y
+f, ()7 (39 +n, () o+ 1
" 9] v T o
v h v
d = r'_)g +3 1/6[5 +3 ]
2 R s A VAt s SR
d, = [8g, 2490, o +30 21/120{s, +0 1°
4 h h v v hov

£, = o /2 [o,+0 ]

s
f, = ov[30h+ov]/12[oh+cvl

2
h, = cv[0h+3ov]/2N[oh+cv]

The angular deflection in the y direction is
obtained by interchanging all x and y in the abave

expressions together with interchanging all
subscripts h and v.

A Hamiltonian coefficient due to the space charge
field may be obtained from the formulae of Guignard
after making a comparison of the space charge
potential (or dx/ds, dy/ds) with the equivalent term
due to a given non-linear thin magnetic lens. As an
example, the h coefficient is found to be:

4000 (76)
“4) bk
v = < 2 +
"4000(76) (8,75 e (20,40)
384 ™ R v Uh (0h+0 )<
where M is the number of interaction regions The
width of this resonance is given by
se = Mah(ﬁh 1 Nre(20h+ov)
6 ¥ dhd(0h+dv}4
6. Computational Methods and Results

Existing lattice programs have been expanded to
include linear beam=-beam focussing terms and to give
Hami ftonian coefficierts for the distributed
sextupoles. In the case of coff-momentum particles,
the equivalent gquadrupole effect of the sextupoles is
also introduced.

Modified latrice f-functions are first evaluated.
The mismatch of the g-profile increases as a function
of the space charge, particularly for positive values
ome N Hamiltorian
coefficients are computed from the perturbed f-values
for given sextupole distributions, &p/p values and
space charge fields.

Third-order Hamiltonian coefficients are
generated from fupctiors such as those introduced in
section 3. Typical widths of third-order sum

resonances in EPIC are given in Figure | as a function
of space charge for a particular sextupole
distribution and for a h
aspect ratio of 10:1. The assumed beam emittances
correspond to 10 standard deviations of the expected
Gaussian distributions at 14 GeV. The space-charge
parameter, AQ, is chosen to be equal in the x and vy

directions, with AQh defined:

(S
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Fourth-order terms are computed from a large
number of the third-order coefficients. The inf
sums, described in section 4, have each been
approximated by a series of 15 leading terms.
Subsequently, M H R Donaid® has obtained solutions for
the infinite series. |In Figure 2, resonance-width
contributions due to the sextupoles are plotted for
the 2Q,+2Q;, = 76 resonance in EPIC. Also shown as a
function of AQ are the Hamiltonian coefficients for
the coupling resonance 2Q,~2Qp = 0 (suitably scaled by
8Reh (1+ey/ep)), and the variations, §Qy, in the
vertical tune (lowest two curves). Non-linear space-

ont resonances, and to §Qy,

s.

charge contr
have not been in the curve

See Ly
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Results indicate that the
the sextupoles are enhanced as
beam limits will not depend on the non-linearities of
the space charge fields alone, but on the combined
effects of the sextupoles and the space charge forces.

non-linear effects of
AQ increases. Beam-

the psarticular examole chosen
the particular examplie chosen,

For

there ig
For 1S

ciagnificant
there 1t

significa
horizontal-vertical coupling and change in vertical
tune due to the sextupoles. With &g, = -0.1, the

vertical tune decreases towards the Qv = 19 resonance.

It is planned to continue studies with other
sextupole distributions and Q values, and to compare
the results with detailed trackings. Alternative tunes,
close to even-integer values, are of interest hecause
of the large decrease of "™ with aQ.

Lattices with superperiod number 2 have not
studied, but the present studies suggest they wil
have undesirable rescnance properties.
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