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I, Introduction 

A symmetrical arrangement of sextupole magnets is 
included in the design of large electron-positron 
storage rings so as to provide low values of 
chromatici ty. The strength of the sextupoles is such 
that they contribute appreciable non-linear effects. 
The maximum number of particles that can be brought 
into collision in the rings is then determined by the 
combined effects on particle motion of the sextupole 
fields and the beam-beam space charge forces. 

Electrons and positrons collide at a few inter- 
action regions where there are linear and non-linear 
components of the space charge forces between the 
co1 1 iding beams. The non-l inear components excite 
non-linear resonances, while the linear components 
may be considered to introduce a modified B-function 
throughout the magnet lattice. Such a modified 
S-profile alters the non-linear contributions of the 
lattice sextupoles, and distributions of sextupoles 
which are optimised prior to beams being brought into 
collision are, in general, not optimum for the 
collision mode. Also, off-momentum particles travel 
off-axis through the sextupoles which adds an 
equivalent quadrupole effect. The oscillation of an 
off-momentum particle may be analysed by assuming 
that the quadrupole term gives a further change in 
the S-function, with consequent effect on the non- 
1 inear motion. 

Approximate methods are described for estimating 
the resonance widths due to the combined action of 
the sextupoles and the beam-beam forces. In 
particular, the fourth-order terms due to the 
sextupoles are obtained, both the resonance terms and 
those terms which give the variation of tune with 
amp1 i tude. This work was initiated to assess 
acceptable sextupole distributions, to act as a guide 
in interpreting detailed tracking programs and to 
obtain estimates of possible beam-beam limits. A more 
accurate treatment would extend the analysis to 
include betatron-synchrotron coupling. 

2. Non-Linear Resonance Theory 

R Hagedorn 1 is one of a number of authors who 
has analysed particle motion in accelerators under 
the presence of non-linear magnetic fields. He gives 
a genera1 analysis of coupled transverse betatron 
motion, using a co-ordinate system (x, y, 8) where 
particle azimuth is defined by the angle 8 and the 
plane (x, y) is orthogonal to the direction of motion. 
in this co-orJ;nate system, 2n-pole fields have 
c mpl x Fourier components of potential of the form 
.Sn-qf yq eiP3, where n, q and p are integers. 
Hagedorn first derives nth order Hami I tonians to 
describe the non-linear motion that results from the 
Zn-pole fields. Resonance is defined by 
(n-1) Qh + q Q, = p, where Qh and Qv are betatron 
tunes. For the particular case of sextupoles, where 
n = 3, Hagedorn continues the analysis to the next 
approximation and finds the sextupole contributions to 
the fourth-order Hamiltonians. Such terms are 
significant for the sextupole distributions required 
in large e+-e- storage rings. 

In a later report, G Guignard2 obtains a more 
convenient expression for the nth order Hamiltonians 
of the Zn-pole fields. These are given as a function 
of the lattice E-values and the azimuthal distribution 
of the Zn-pole elements. The nomenclature used for 

the nth order Hamiltonian coefficients is (n) h. 
where n = (j+k+l+m) and q = (l+m) . 

Jklmb) 

Guignard derives widths of the ‘sum resonances in terms 
of these h coefficients. Expressions for third order 
resonances are given in section 3. 

Examples of the nomenclature are given for two 
resonance lines shown in Figure 3, which is drawn for 
Q values near 19.15, a possible operating point for 
the proposed storage ring, EPIC: 

(3) 
ho120(20) 

for ZQv-Q, = 20, and 

for 2Qv+2Qh = 76. 

The contribution to fourth-order Hamiltonians 
that arises from sextupole fields is given by 
Hagedorn, as infinite sums of products of pairs of the 
third-order coefficients. Examples of these infini-te 
sums are given in section 4 for sum and difference 
resonances. The following terms give the variations 
of Q, and Qh as a function of the oscillation 
amp1 itudes: 

(4) 
92200 (0) ’ 

(4) 
go022 (0) ’ 

(41 
gllll(0) 

As the infinite sums involve products of pairs of 
the third-order coefficients, the effect of an 
individual sextupole depends not only on its magnitude 
and on the local R-functions but on the strengths of 
all the sextupoles in the storage ring and on the 
S-values at each sextupole. 

Space charge fields may also be analysed for 
resonance effects by deriving the relevant non-linear 
terms. This approach has been adopted by B W Montague” 
E KeilL and A G Ruggiero5. In the case of head-on 
e+-e- co1 1 isions, with Gaussian particle distributions 
in the x, y directions, the space charge potential may 
be expanded as an infinite series of terms with even- 
order powers of x and y. The lowest order terms 
involve x? or y* and lead to linear focussing in the 
x and y directions at each interaction region. The 
linear terms may be separated from the higher order 
terms and may be considered as introducing a a-change 
through the lattice. In particular, the minimum 
S-value at the interaction point, B” will be perturbed 
to some new value, S”“: 

9: f; 1R 
8 = $/[l - $ + 2n cot p] 

where u is the phase shift of the betatron motion per 
superperiod, and 

n = 0.5 B”/F 

with F the equivalent focal length of the linear beam- 
beam lens. Any given non-linear space charge term will 
contribute to a particular resonance, and the resonance 
width is obtained from the appropriate Guignard 
integral. Since there is only one interaction point 
per superperiod, the integral is readily evaluated. 
T& correct B-values to use in the integral are the 
a values given above. A typical resonance due to 
non-linear space charge terms is evaluated in 
section 5. For the motion of an off-momentum particle, 
there is an additional change in B”t due to the action 
of the chromaticity-correcting sextupoles. 
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3. Examples of Third-Order Hamiltonian Coefficients 4. Fourth-Order Hamiltonians Due To Sextupoles 

Again refer to Figure 3 for examples of resonance 
I ines. The operating Q-point is shown near 19.15, 
though alternative Points exist near 18.15 and 15.15. 
With four superperiods in EPIC, there are five neigh- 
bouring, systematic, third-order resonances which may 
be excited by the lattice sextupoles. There are no 
equivalent third-order terms in the beam-beam space 
charge forces in the particular case of head-on 
collisions. The coefficients that describe these five 
systematic third-order resonances are: 

(3) (3) 
h3000 (56) ’ h3000 (60) ’ 

(3) 
hl(;;O(56)' h1020[60)* hi:iO(20)' 

General formulae for Hami 1 tonians and resonance 
widths are given in reference (2). These are defined 
in terms of the parameters: 

R, the mean radius of the storage ring, 

5, the length along the orbit measured 
from the interaction point, 

$,,%,,, the lattice B-functions at the 
positions of the non-linear elements, 

SPCV2 
the horizontal and vertical beam 
emi ttances, and 

K, the parameter defining the strength 
of the non-linear element. For 
sextupoles. a normalised strength is 
defined with 

K=$/b. - 

Resonance widths for third-order sum resonances 
are given by: 

Ae (for 3Q,=p) = If45 1 h$;;o(p) 1 

he (for PQv+Qh=p) = 8(1+4z)J< j hl(;;Ofp) 1 
h 

Ex mples 
for h(3 7 

of thir -order coefficients are given 

3000(56) 
and h(3? 

1020 (60) : 

r+7~R 

JmTR 
3Qh 
R - ih ] ds) 

exp (-TJ ] ’ 3 = h;;;o(56) 

ilivq K 

16-r 

exp (-q) ] ’ G = hl(iiO (60) 

Many further third-order coefficients must be 
evaluated in order to obtain the fourth-order 
Hamiltonians which describe the fourth-order effect 
of the sextupoles. These include: 

h(3) ,(3) h(3) (3) (3) 
3000(p)’ 1020(P)’ 0120(P)’ h2100(P)’ hioll(P) 

where p is any integ r divisible b 
number. The terms h~~~oiply:~d,~~~~;~~~s~~~r~~~iod 
resonances of third or e e to fourth- 
order resonances. 

The coefficients of interest for the resonance 
diagram of Figure 3 are: 

(4) (4) (4) (4) 
g220o(o)' goo22(a)~ g~lll(o)’ g4000(76)’ ‘%0!76), 

g::10(76) ’ g% (0) * 

All but the last of these is derived in the form 
of infinite sums in reference (l), eg 

g::;o (76) = h::b0 (76) 
+ 3i 

t 
h;:;o(p) h:::0(,6-p) 

(ah-P) 
P 

The first term arises from any octupoles present, 
while the summation term is for the third-order 
coefficients due to sextupoles. An additional 
summation term is required if skew sextupole 
are present. 

Resonance widths for the sum resonances 

Ae (for 4Qh=p) L-z 
32 REh I ‘4000(p) 

(4) / 

de (for 2Qv+2Qh=p) = 8 (1 + 2 Rch lg;; 

fields 

are: 

O(P) ’ 

The variation of Qv and Q, as a function of the 
beam emittances is:- 

6Q, = iR [Eh glYl(o) + 
(4) 

2E” goo2*(o)1 

“Q, = iR [e,, g 
(4) (4) 
1111 (0) + 2Eh g2200(011 

Finally, there is the difference resonance 
2Qv-2Qh=O, which is not derived in reference (1). 
This resonance line lies along the leading diagonal 
of Figure 3. It may be excited both by the lattice 
sextupoles and by the 2* p component of the beam-beam 
space charge potential. The contribution of the 
lattice sextupoles is: 

EC 13) 
(4) 

92002(O) = i 
h~~~2(-p)~h::bO~p~+2h1011 (p)] 

P 
(a,-P) 

+ 3h120(-p) hK2(p, 
- (Qh+2Qv+p) ) 

5. Hamiltonians Due to Space Charge Fields 

Space charge potentials have been derived in 
reference (3) for a beam of Gaussian distributions in 
both the x and y directions. An expansion of the 
potential is an infinite series of terms involving 
even order powers of x and y. The potential function 
may be used to obtain the angular deflection of a 
particle of one beam at an interaction region on 
passing a bunch of N particles of the second beam. 
In the x direction, 
e+-e- 

the angular deflection for head-on 
collisions is: 

dx/ds = - 2NreF(x,y)/ych(oh+ov) 

where re is the classical electron radius 
(= e2/mc’ 47~~~)) 
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‘h”v 

F(x,yj = 

d2 = 

d, = 

f, = 

f, = 

h = 
+ 

is the ratio of the particle energy to its 
r-es t energy, 
are standard deviations of the beam 
distributions at the interaction region in 
the x and y di rections respectively, and 

x [I - d, (b)2 - f: (+)2 + d,, 
h v 

‘q 4 

+ f, ($j’ ‘k)’ + h,+ ‘$+ + . . ..I 
v v 

[20h+uv1/6[a,,+~v1 

4, '+70hov+30 w120[ah+avl~ v 

o/2 kh+3”l 

uv[30h+~vl/12[ah+~~v12 

uv[o~+3u"l/2410h+a"l~ 

The angular deflection in the y direction is 
obtained by interchanging all x and y in the above 
expressions together with interchanging all 
subscripts h and v. 

A Hamiltonian coefficient due to the space charge 
field may be obtained from the formulae of Guignard 
after making a comparison of the space charge 
potential (or dx/ds, dy/ds) with the equivalent term 
clue to a given non-linear thin magnetic lens. As an 
example, the h(4) 

4000(76) 
coefficient is found to be: 

h~~~Gi76, = - iM(3h 
-L -2 ? 

)’ 2Nr,(20h+uv) 

384 Y Oh5 ( uh+““J 
2 

where M is the number of interaction regions. The 
width of this resonance is given by: 

22 = MCh (shy 2 Nre (2Chf”“) 

6n 
y oh 

j (sh+‘rv) 2 

6. Computational Methods and Results 

Existing lattice programs have been expanded to 
i Iclude 1 inear beam-beam focuss ing terms and to give 
Haniltonian coefficierts for the distributed 
iextupoles. IP the case of off-momentum particles, 
Lhe equivalent quadrupole effect of the sextupoles is 
also introduced. 

Modified lattice i-functions are first evoldatec. 
The mismatch of the L-profile increases as a function 
of the space charge, particularly for positive valises 
of the off-nomentum parameter, ,:p/o. Hani I torian 
coefficients are computed from the perturbed C-values 
for gi%/en scxtupoie distributioni, .‘.p/p values and 
space charge fields. 

Third-order Hani 1 tonian coefficients are 
~gc7er,~tcd frt:r? functiors such ai ttloie irtrodiced in 
section 3. Typical widths of ti-ird-order sum 

resonances in EPIC are given in Figure I as a function 
of space charge for a particular sextupole 
distribution and for a horizontal to vertical beam 
aspect ratio of 1O:l. The assumed beam emittances 
correspond to IO standard deviations of the expected 
Gaussian distributions at I4 GeV. The space-charge 
parameter, 3Q, is chosen to be equal in the x and y 
d i rect i ons , with bQ, defined: 

np = 
h NreBh /2n wh (oh+s,,) 

Fourth-order terms are computed from a large 
number of the third-order coefficients. The infinite 
sums, described in section 4, have each been 
approximated by a series of 15 leading terms. 
Subsequently, M H R Donald6 has obtained solutions for 
the infinite series. In Figure 2, resonance-width 
contributions due to the sextupoles are plotted for 
the 2Qv+2Qh = 76 resonance in EPIC. Also shown as a 
function of aQ are the Hamiltonian coefficients for 
the coupling resonance 2Qv-2Qh = 0 (suitably scaled by 
ORE ( l+E,/Eh)) 
vertical tune 

and the variations, 6Qv, in the 
(;oWest two curves). Non-linear space- 

charge contributions to the resonances, and to 6Qv, 
have not been included in the curves, 

Results indicate that the non-linear effects of 
the sextupoles are enhanced as 1?Q increases. Beam- 
bean limits will not depend on the non-linearities of 
the space charge fields alone, but on the combined 
effects of the sextupoies and the space charge forces. 
For the particular example chosen, there is signyficant 
horizontal-vertical coupling and change in vertical 
tune due to the sexrupoles. With bQv = -0.1, the 
vertical tune decreases towards the Q, = 19 resonance. 

It is planned to continue studies with other 
sextupole distributions and Q values, and to compare 
the results with detailed trackings. Alternative tunes, 
close to even-integer values are of interest because 
of the large decrease o f e f: a with nQ. 

Lattices with superperiod number 2 have not been 
studied, but the present studies suggest they wi 11 
have undesirable resonance properties. 
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